Warming waters in western tropical Pacific may affect West Antarctic Ice Sheet

June 13, 2019

Warming waters in the western tropical Pacific Ocean have significantly increased thunderstorms and rainfall, which may affect the stability of the West Antarctic Ice Sheet and global sea-level rise, according to a Rutgers University-New Brunswick study.

Since the mid-1990s, West Antarctica - a massive ice sheet that sits on land - has been melting and contributing to global sea-level rise. That melting has accelerated this century. Wind and weather patterns play a crucial role in governing the melting: Winds push warm ocean water toward the ice sheet and melt it from below, at the same time as winds bring warm air over the ice sheet surface and melt it from above.

The study, in the journal Geophysical Research Letters, found that the South Pacific Convergence Zone, a region of the western tropical Pacific, is a major driver of weather variability across West Antarctica.

"With so much at stake - in coastal communities around the globe, including in New Jersey - it is very important to understand the drivers of weather variability in West Antarctica," said Kyle Clem, a former post-doc who led the research at Rutgers-New Brunswick and is now at Victoria University of Wellington in New Zealand. "Knowing how all regions of the tropics influence West Antarctica, both independently and collectively, will help us understand past climate variability there and perhaps help us predict the future state of the ice sheet and its potential contribution to global sea-level rise."

Rutgers researchers studied how warming ocean temperatures in the western tropical Pacific influence weather patterns around West Antarctica. This century, the Antarctic Peninsula and interior West Antarctica have been cooling while the Ross Ice Shelf has been warming - a reversal of what happened in the second half of the 20th century. From the 1950s to the 1990s, the Antarctic Peninsula and interior West Antarctica were the most rapidly warming regions on the planet, and the Ross Ice Shelf was cooling.

The temperature trends flipped at the start of this century. Coinciding with the flip in West Antarctic temperature trends, ocean temperatures in the western tropical Pacific began warming rapidly. Using a climate model, the researchers found that warming ocean temperatures in the western tropical Pacific have resulted in a significant increase in thunderstorm activity, rainfall and convection in the South Pacific Convergence Zone. Convection in the atmosphere is when heat and moisture move up or down.

A rainfall increase in the zone results in cold southerly winds over the Antarctic Peninsula and warm northerly winds over the Ross Ice Shelf, consistent with the recent cooling and warming in those respective regions. So the West Antarctic climate, although isolated from much of the planet, is profoundly influenced by the tropics. The findings may help scientists interpret the past West Antarctic climate as recorded in ice cores.
-end-
Study co-authors include Benjamin R. Lintner, an associate professor in the Department of Environmental Sciences; Anthony J. Broccoli, a professor who chairs that department; and James R. Miller, a professor in the Department of Marine and Coastal Sciences in the School of Environmental and Biological Sciences.

Rutgers University

Related Ice Sheet Articles from Brightsurf:

Greenland ice sheet shows losses in 2019
The Greenland Ice Sheet recorded a new record loss of mass in 2019.

Warming Greenland ice sheet passes point of no return
Nearly 40 years of satellite data from Greenland shows that glaciers on the island have shrunk so much that even if global warming were to stop today, the ice sheet would continue shrinking.

Greenland ice sheet meltwater can flow in winter, too
Liquid meltwater can sometimes flow deep below the Greenland Ice Sheet in winter, not just in the summer, according to CIRES-led work published in the AGU journal Geophysical Research Letters today.

Ice sheet melting: Estimates still uncertain, experts warn
Estimates used by climate scientists to predict the rate at which the world's ice sheets will melt are still uncertain despite advancements in technology, new research shows.

Thousands of meltwater lakes mapped on the east Antarctic ice sheet
The number of meltwater lakes on the surface of the East Antarctic Ice Sheet is more significant than previously thought, according to new research.

Researchers discover ice is sliding toward edges off Greenland Ice Sheet
They found that ice slides over the bedrock much more than previous theories predicted of how ice on the Greenland Ice Sheet moves.

A clearer picture of global ice sheet mass
Fluctuations in the masses of the world's largest ice sheets carry important consequences for future sea level rise, but understanding the complicated interplay of atmospheric conditions, snowfall input and melting processes has never been easy to measure due to the sheer size and remoteness inherent to glacial landscapes.

Researchers discover more than 50 lakes beneath the Greenland Ice Sheet
Researchers have discovered 56 previously uncharted subglacial lakes beneath the Greenland Ice Sheet bringing the total known number of lakes to 60.

Ice-sheet variability during the last ice age from the perspective of marine sediment
By using marine sediment cores from Northwestern Australia, a Japanese team led by National Institute of Polar Research (NIPR) and the University of Tokyo revealed that the global ice sheet during the last ice age had changed in shorter time scale than previously thought.

Novel hypothesis goes underground to predict future of Greenland ice sheet
The Greenland ice sheet melted a little more easily in the past than it does today because of geological changes, and most of Greenland's ice can be saved from melting if warming is controlled, says a team of Penn State researchers.

Read More: Ice Sheet News and Ice Sheet Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.