Nav: Home

X and gamma rays --Even more powerful

June 13, 2019

International group of researchers including scientists from Skoltech have invented a new method for the generation of intense X and gamma-ray radiation based on Nonlinear Compton Scattering. Their results were published in the prestigious Physical Review Letters journal and the invention is about to get an international patent.

The Compton Effect is similar to playing tennis but in an unusual way. An electron plays the role of the racket and a photon plays the role of the ball. A photon being reflected from the fast electron racket acquires additional energy. It cannot fly even faster - the speed limit forbids that, but it can easily change its color, i.e. wavelength. Using this simple game, one can transform the wavelength of the incoming photon from the visible range to X and gamma-rays. Hard photon sources based on Inverse (linear) Compton Scattering are widely used throughout the world and typically consist of the electron accelerator and the laser system. The main advantage of such sources is the possibility to generate a narrow bandwidth radiation with the wavelength easily tunable by changing the energy of the electrons.

The most straightforward way to increase the number of generated X and gamma-ray photons is to increase the intensity of the laser system. In other words, the more compactly packed is the laser radiation in space (considering that the diffraction is small), the more scattering events between laser photons and electrons there will be.

This is well known together with the fact that increasing the power of the laser radiation in Compton Scattering leads to considerable spectral broadening. This is due to the light pressure, which slows the electrons down. In other words, our tennis racket while reflecting myriads of small tennis balls at once is slowed down; hence, the reflected balls will receive less energy. The problem here is that powerful laser radiation is not continuous, but rather comes as pulses in time. The intensity of powerful laser pulses first slowly grows and then slowly dies out. Consequently, the light pressure is non-uniform and the slow-down of the electrons is different at different moments of time leading to different energy of reflected photons.

The scientific team including Skoltech Professor Sergey Rykovanov invented a new method for generation of intense monoenergetic X and gamma-ray radiation based on Nonlinear Compton Scattering.

Sergey Rykovanov, a Professor from Skoltech's Center for Computational and Data-Intensive Science and Engineering:

"Such spectral line broadening is parasitic since we want to obtain a narrow bandwidth photon source with a well defined wavelength. Together with Vasily Kharin from Research Institute in Moscow and Daniel Seipt from University of Michigan in USA we invented a very simple method to remove the parasitic Compton line broadening for intense laser pulses and significantly increase the number of generated X and gamma-ray photons. To do this one has to carefully tune the frequency of the laser pulse (in other words to chirp it) so that it corresponds to the laser pulse intensity at each moment of time. For optimal effect, we proposed to use two linearly and oppositely chirped laser pulses propagating with a certain delay to each other. In my opinion, the beauty of our work is in its simplicity. To be entirely honest, we were very surprised how simply and smoothly everything worked out."

The new invention can significantly increase the brightness of modern and future synchrotron sources for research in medicine, nuclear physics and material science.

The scientists note that part of the simulations was performed on Skoltech's flagship supercomputer, "Zhores", named after the Nobel laureate Zhores Alferov.
-end-


Skolkovo Institute of Science and Technology (Skoltech)

Related Laser Pulse Articles:

Pulse-like jumps in atmospheric carbon dioxide occurred in glacial and early interglacial periods
Once only associated with colder climate conditions of the last glacial period, a new study finds that rapid, pulse-like increases in atmospheric carbon dioxide (CO2) also occurred during earlier, warmer interglacial periods.
Project creates more powerful, versatile ultrafast laser pulse
In Physical Review Letters, University of Rochester researchers describe a new device, the ''stretched-pulse soliton Kerr resonator,'' that creates an ultrafast laser pulse that is freed from the physical limits endemic to sources of laser light and the limits of the sources' wavelengths.
Pulse pressure: A game changer in the fight against dementia
Researchers unravel a pulse-pressure-induced pathway of dementia providing a new understanding on the pathogenesis of dementia.
Pulse oximetry monitoring overused in infants with bronchiolitis
Monitoring blood oxygen levels with continuous pulse oximetry is being overused in infants with bronchiolitis who do not require supplemental oxygen, according to a study by researchers at Children's Hospital of Philadelphia (CHOP).
I spy with my digital eye ... a tiger's breathing, a lion's pulse
A pilot study undertaken by researchers from the University of South Australia at Adelaide Zoo, has developed a new way to undertake basic health checks of exotic wildlife using a digital camera, saving them the stress of an anaesthetic.
How to take a picture of a light pulse
Until now, complex experimental equipment was required to measure the shape of a light pulse.
Laserphysics: At the pulse of a light wave
Physicists in the Laboratory for Attosecond Physics at Ludwig-Maximilians-Universitaet (LMU) in Munich and at the Max Planck Institute for Quantum Optics (MPQ) have developed a novel type of detector that enables the oscillation profile of light waves to be precisely determined.
Laser pulse creates frequency doubling in amorphous dielectric material
Researchers have demonstrated a new all-optical technique for creating robust second-order nonlinear effects in materials that don't normally support them.
A milestone in ultrashort-pulse laser oscillators
With the demonstration of a sub-picosecond thin-disk laser oscillator delivering a record-high 350-W average output power, physicists at ETH Zurich set a new benchmark and pave the path towards even more powerful lasers.
Pulse waves measured at the wrist uncover often-missed artery changes in menopausal women
Measuring a menopausal woman's pulse wave at her wrist can detect circulatory system changes that aren't evident with blood pressure readings.
More Laser Pulse News and Laser Pulse Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.