Nav: Home

Hubble observes tiny galaxy with big heart

June 13, 2019

Nestled within this field of bright foreground stars lies ESO 495-21, a tiny galaxy with a big heart. ESO 495-21 may be just 3000 light-years across, but that is not stopping the galaxy from furiously forming huge numbers of stars. It may also host a supermassive black hole; this is unusual for a galaxy of its size, and may provide intriguing hints as to how galaxies form and evolve.

Located about 30 million light-years away in the constellation of Pyxis (The Compass), ESO 495-21 is a dwarf starburst galaxy -- this means that it is small in size, but ablaze with rapid bursts of star formation. Starburst galaxies form stars at exceptionally high rates, creating stellar newborns of up to 1000 times faster than the Milky Way.

Hubble has studied the bursts of activity within ESO 495-21 several times. Notably, the space telescope has explored the galaxy's multiple super star clusters, very dense regions only a few million years old and packed with massive stars. These spectacular areas can have a huge impact on their host galaxies. Studying them allows astronomers to investigate the earliest stages of their evolution, in a bid to understand how massive stars form and change throughout the Universe.

As well as hosting the cosmic fireworks that are super star clusters, ESO 495-21 also may harbour a supermassive black hole at its core. Astronomers know that almost every large galaxy hosts such an object at its centre, and, in general, the bigger the galaxy, the more massive the black hole. Our home galaxy, the Milky Way, houses a supermassive black hole, Sagittarius A*, which is over four million times as massive as the Sun. ESO 495-21, also known as Henize 2-10) is a dwarf galaxy, only three percent the size of the Milky Way, and yet there are indications that the black hole at its core is over a million times as massive as the Sun -- an extremely unusual scenario.

This black hole may offer clues as to how black holes and galaxies evolved in the early Universe. The origin of the central supermassive black holes in galaxies is still a matter of debate -- do the galaxies form first and then crush material at their centres into black holes, or do pre-existing black holes gather galaxies around them? Do they evolve together -- or could the answer be something else entirely?

With its small size, indistinct shape, and rapid starburst activity, astronomers think ESO 495-21 may be an analogue for some of the first galaxies to have formed in the cosmos. Finding a black hole at the galaxy's heart is therefore a strong indication that black holes may have formed first, with galaxies later developing and evolving around them.

The data comprising this image were gathered by two of the instruments aboard the NASA/ESA Hubble Space Telescope: the Advanced Camera for Surveys and already decommissioned Wide Field Planetary Camera 2/.
-end-
More information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

Image credit: NASA, ESA, W. Vacca

Links

* Images of Hubble - http://www.spacetelescope.org/images/archive/category/spacecraft/

Contacts

Bethany Downer
ESA/Hubble, Public Information Officer
Garching bei München, Germany
Email: bethany.downer@partner.eso.org

ESA/Hubble Information Centre

Related Black Hole Articles:

Scientists make waves with black hole research
Scientists at the University of Nottingham have made a significant leap forward in understanding the workings of one of the mysteries of the universe.
Collapsing star gives birth to a black hole
Astronomers have watched as a massive, dying star was likely reborn as a black hole.
When helium behaves like a black hole
A team of scientists has discovered that a law controlling the bizarre behavior of black holes out in space -- is also true for cold helium atoms that can be studied in laboratories.
Star in closest orbit ever seen around black hole
Astronomers have found evidence of a star that whips around a likely black hole twice an hour.
Tail of stray black hole hiding in the Milky Way
By analyzing the gas motion of an extraordinarily fast-moving cosmic cloud in a corner of the Milky Way, Astronomers found hints of a wandering black hole hidden in the cloud.
Hubble gazes into a black hole of puzzling lightness
The beautiful spiral galaxy visible in the center of the image is known as RX J1140.1+0307, a galaxy in the Virgo constellation imaged by the NASA/ESA Hubble Space Telescope, and it presents an interesting puzzle.
Clandestine black hole may represent new population
Astronomers have combined data from NASA's Chandra X-ray Observatory, the Hubble Space Telescope and the National Science Foundation's Karl G.
When will a neutron star collapse to a black hole?
Astrophysicists from Goethe-University Frankfurt have found a simple formula for the maximum mass of a rotating neutron star and hence answered a question that had been open for decades.
Behemoth black hole found in an unlikely place
Astronomers have uncovered a near-record breaking supermassive black hole, weighing 17 billion suns, in an unlikely place: in the center of a galaxy in a sparsely populated area of the universe.
Behemoth black hole found in an unlikely place
Astronomers have uncovered one of the biggest supermassive black holes, with the mass of 17 billion Suns, in an unlikely place: the centre of a galaxy that lies in a quiet backwater of the Universe.

Related Black Hole Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".