Nav: Home

From rain to flood

June 13, 2019

Extreme weather events, such as thunderstorms or heavy rainfall and the resulting floods, influence Earth and environmental systems in the long term. To holistically study the impacts of hydrological extremes - from precipitation to water entering the ground to discharge to flow into the ocean -, a measurement campaign at Müglitztal/Saxony is about to start under the MOSES Helmholtz Initiative. The measurement campaign is coordinated by Karlsruhe Institute of Technology (KIT).

A single heavy rainfall event may have serious impacts on an entire river system, ranging from land erosion by floods to nutrient and pollutant transports to changes of the ecosystem. The current MOSES measurement campaign studies hydrological extreme events from the source in the atmosphere to response of biosystems.

MOSES stands for "Modular Observation Solutions for Earth Systems." Within this joint initiative, nine research centers of the Helmholtz Association set up mobile and modular observation systems to study the impacts of temporarily and spatially limited dynamic events, such as extreme precipitation and discharge events, on the long-term development of Earth and environmental systems. The current measurement campaign on hydrological extremes coordinated by KIT takes place from mid-May to mid-July 2019 at Müglitztal, Saxony. In this region located in the Eastern Erzgebirge (Ore Mountains), certain weather conditions may result in extreme precipitations and floods, an example being the flood of 2002. Such extreme events are triggered either by depressions which, together with blockage effects by mountains, cause high precipitation or by small-scale convective precipitation events, i.e. thunderstorms, that may be associated with floods in a limited area, i.e. a mountain valley.

Apart from the Troposphere Research Division of KIT's Institute of Meteorology and Climate Research (IMK-TRO), the Helmholtz Centre for Environmental Research (UFZ) Leipzig, Forschungszentrum Jülich (FZJ), and the Helmholtz Centre Potsdam - German Research Centre for Geosciences (GFZ) are involved in the current measurement campaign with their measurement systems.

KIT will use its mobile KITcube observatory. Its supplies information on the formation and development of strong rainfall, precipitation distribution, and evaporation. Among others, a radar is applied to measure precipitation within a radius of 100 km, a microwave radiometer serves to determine the atmospheric temperature and humidity profiles, and a lidar system is used to measure the wind profile with the help of lasers. Radiosondes supply information on the state of the atmosphere up to 18 km height. A network of distrometers, i.e. systems for continuous monitoring of precipitation intensity and raindrop size, supplies additional information on processes in the observation area.

UFZ scientists will focus on soil humidity that is an important variable to control discharge of rainwater. If the soil is too humid or extremely dry, rainwater flows off the land surface and floods may develop more quickly. To optimally monitor the development of soil humidity, UFZ will install a mobile, wireless sensor network to measure soil humidity and temperature at variable depths. In contrast to classical systems, the sensor network allows precise adjustment of sensor positions and distribution as well as of scanning rates to local measurement conditions. Apart from the stationary sensor network, mobile cosmic ray rovers with specially developed neutron sensors will be applied. With them, researchers can observe large-scale variation of soil humidity in the Müglitz catchment area.

Scientists of Forschungszentrum Jülich will launch balloon probes up to 35 km height to determine, among others, how thunderstorms affect climate in the long term. Using water vapor, ozone, and cloud instruments, they study trace gas transport through thunderstorms into the upper troposphere - the bottom layer of the Earth's atmosphere - or even into the stratosphere above.

GFZ researchers will use mobile measurement units to study the influence of stored water on the development of a flood. Apart from cosmic ray sensors to measure water in the upper soil and sensors to measure close-to-surface groundwater, they will also use so-called gravimeters. These systems detect variations of the Earth's gravity due to changing underground water masses, also at larger depths.
-end-
The current measurement campaign is part of the activities of the MOSES team within the module "Hydrological Extremes" in the research field Earth and Environment of the Helmholtz Association.

Homepage of MOSES: https://www.ufz.de/moses/

Additional materials: https://blogs.helmholtz.de/moses/

More about the KIT Climate and Environment Center: http://www.klima-umwelt.kit.edu/english

Press contact:

Dr. Martin Heidelberger
Press Officer
Tel.: +49 721 608-21169
EMail: martin.heidelberger@kit.edu

Being „The Research University in the Helmholtz-Association", KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 25,100 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life.

This press release is available on the internet at http://www.sek.kit.edu/english/press_office.php.

Karlsruher Institut für Technologie (KIT)

Related Precipitation Articles:

Study shows link between precipitation, climate zone and invasive cancer rates in the US
In a new study, researchers provide conclusive evidence of a statistical relationship between the incidence rates of invasive cancer in a given area in the US and the amount of precipitation and climate type (which combines the temperature and moisture level in an area).
Steep momentum gradients play a major role in coastal precipitation
Steep gradients of wind stress and potential temperature enable sustainable nearshore precipitation systems along the western coastal region of Korea.
Increasing precipitation extremes driving tree growth reductions across southwest
As the Earth's temperature warms, its hydrological cycle kicks into overdrive - wet years get wetter, and dry years get drier.
Extreme flooding from storm surge and heavy precipitation projected to increase higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change
Risk of compound flooding, which can result when rapid sea level rises associated with storms occur along with heavy rains, is currently concentrated along Mediterranean countries but will greatly increase for Northern European in the future as the climate warms, according to a new modeling study.
NASA reveals heavy rainfall in Tropical Cyclone Fani
Satellite data revealed heavy rainfall in powerful Tropical Cyclone Fani before it made landfall in northeastern India.
Wildfire risk in California no longer coupled to winter precipitation
Wet winters no longer predict possible relief from severe wildfires for California.
More water resources over the Sahel region of Africa in the 21st century under global warming
Scientists from Institute of Atmospheric Physics, Chinese Academy of Sciences found that the projection uncertainty of Sahel summer precipitation among the climate models is closely related to the historical precipitation simulation in South Asia and the western North Pacific.
Half of the world's annual precipitation falls in just 12 days, new study finds
Currently, half of the world's measured precipitation that falls in a year falls in just 12 days, according to a new analysis of data collected at weather stations across the globe.
Overlooked trends in annual precipitation reveal underestimated risks worldwide
University of Maine researchers have reanalyzed global annual precipitation using quantile regression to reveal overlooked trends.
Researchers study one million years of precipitation to gain new insights into South Asian monsoon
The force of the South Asian Monsoon -- a weather pattern that affects the lives of several billion people -- is more sensitive to warming in the southern hemisphere than scientists previously thought, according to a new study by an international team of climate researchers.
More Precipitation News and Precipitation Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab