Genetic inequity towards endocrine disruptors

June 13, 2019

Phthalates, one of the most common endocrine disruptors, are commonly used by industry in many plastic products - toys, clothing, baby bottles or even medical equipment - as well as in cosmetics. If guidelines are beginning to be imposed to limit their use, their toxic effect on the endocrine system is worrying. Indeed, the exposure of male foetuses to phthalates can have devastating consequences for the fertility of future individuals by modifying the regulatory elements of the expression of genes responsible for spermatogenesis. However, we are not all equal: researchers at the University of Geneva (UNIGE) and the University Hospitals of Geneva (HUG), Switzerland, show that phthalate susceptibility depends largely on the genetic heritage of each individual. These results, to be discovered in PLOS One magazine, raise the question of individual vulnerability as well as that of the possible transmission to future generations of epigenetic changes that should normally be erased during foetal development.

Ariane Giacobino, a researcher in the Department of Genetic Medicine and Development at UNIGE Faculty of Medicine and Associate Assistant Physician at HUG Division of Genetic Medicine, is a specialist in epigenetics (the study of the elements that modify gene expression). In 2015, she observed, by comparing two groups of mice, a very different sensitivity to phthalates, one of the most common endocrine disruptors. "We exposed pregnant females to phthalate doses and studied sperm concentration and quality in their male offspring. If one group had very poor sperm quality, the other group, even though they were exposed to the same doses, would get away with it," explains Ariane Giacobino. Why such a difference?

The researchers reviewed possible epigenetic and genetic causes to determine where the difference between the two groups lays. To do so, they studied all variations of the epigenome and genome of these two groups of mice.

Epigenetic changes that goes down to the next generation

Scientists administered a dose of phthalate to both groups of mice for 8 days between 8 and 18 days gestation. Ludwig Stenz, Junior Lecturer in the Department of Genetic Medicine and Development at UNIGE Faculty of Medicine and first author of this work summarizes their results: "We studied epigenetic and genetic variations in specific portions of the genome, located in the vicinity of genes related to spermatogenesis. This allowed us to identify the exact epigenetic mechanism at work that modulates gene expression upwards or downwards, and thus influences sperm quality and mobility."

The researchers identified hormone-binding sites in the genome of mice vulnerable to phthalates that are not present in the resistant group. This is probably where the endocrine disruptors bind and inactivate these genes. Conversely, the other group presents a protein-binding site in its genome that increases the production of protective elements.

In addition, the researchers observed a worrying phenomenon: not only does the epigenetic effect of phthalates prevent spermatogenesis genes from expressing themselves correctly, but in addition the epigenetic wipe out that usually takes place between generations seems to be no longer completely achieved over the two generations following the individual's exposure.

What about human beings?

This study, funded by the Swiss Centre for Human Toxicology (SCAHT), will now extend to cohorts of men in Switzerland exposed to phthalates. "We currently have no way of knowing to what extent we are -individually or in terms of population - genetically susceptible or not to these epigenetic disruptions, says Ariane Giacobino. We want to have an idea of the proportion of people who are vulnerable to each product. In normative terms, the epidemiological dimension should also be taken into account, as well as possible transgenerational effects. Indeed, if 95% of the population is vulnerable or if only 5% are, the question could be examined differently. In addition, the regional and ethnic dimension should perhaps be taken into account."
-end-


Université de Genève

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.