UT Southwestern researchers find another clue to secrets of cellular aging

June 14, 2001

DALLAS - June 15, 2001 - A discovery by UT Southwestern Medical Center at Dallas scientists that genes near human telomeres can be silenced may help explain how and why humans age.

Telomeres are repeating sequences of DNA located at the end of each chromosome and are believed to function as a counting mechanism for cellular aging.

Dr. Jerry Shay and Dr. Woodring Wright, UT Southwestern professors of cell biology, report in today's issue of Science that human cells can exhibit telomere position effect (TPE), a mechanism by which genes near telomeres can be turned off, and that the strength of gene silencing is proportional to the length of nearby telomeres.

Shay and Wright, along with collaborators at UT Southwestern, have previously shown that human cells age each time they divide because their telomeres shorten. After a finite number of cell divisions - when telomeres become short - the cells stop dividing.

Most normal cells lack the enzyme telomerase, which maintains telomeres. Telomerase is activated in 90 percent of all cancers, in which cells continue to divide at a high rate. Many diseases, including Down syndrome, are characterized by premature aging. Further understanding of TPE could help researchers discover how cellular aging contributes to the overall aging process.

"This is an important step in trying to explain the connection between telomere shortening and aging," Shay said. "Normal cells will only grow for a limited time. They grow for a while, and then they go through a process called senescence, or aging. We wanted to know about the molecular memory. Are cells counting how many times they divide? We believe the telomeres are the molecular memory."

The researchers incorporated a piece of DNA containing a luciferase (the enzyme that allows fireflies to emit light) gene into human cells and showed that if it became located at the telomere, there was 10 times less luciferase activity than if it was located in the middle of a chromosome. They also found an even greater decrease in luciferase activity if they used telomerase to make the telomeres grow longer.

"We knew that when telomeres became too short, they caused cells to stop dividing, but there wasn't a mechanism for how a cell could sense how long its telomeres were before they became too short. TPE can do that. It can let a cell know how old it is so that it could change its behavior before it became senescent," Wright said.

TPE could help explain the differences between young and old cells. For example, if there were "aging" genes next to telomeres, they would be silent when the cells were young. As the cells aged and continued to divide, their telomeres would shorten; the silencing of the genes would be reversed; and the "aging" genes activated.

The researchers are now looking for naturally occurring human genes located near telomeres whose expression is influenced by telomere length. Joseph A. Baur, a UT Southwestern student research assistant in cell biology, and Dr. Ying Zou, a UT Southwestern cell biology fellow, also were involved in the research.

Shay and Wright's earlier research has shown that telomerase causes human cells grown in the laboratory to retain their "youth" and continue to divide long past the time when they normally would have stopped dividing. This discovery is making the use of normal cells for tissue engineering and other therapeutic uses much easier.

The investigators' Web site can be found at http://www.swmed.edu/home_pages/cellbio/shay-wright.

UT Southwestern Medical Center

Related Aging Articles from Brightsurf:

Surprises in 'active' aging
Aging is a process that affects not only living beings.

Aging-US: 'From Causes of Aging to Death from COVID-19' by Mikhail V. Blagosklonny
Aging-US recently published ''From Causes of Aging to Death from COVID-19'' by Blagosklonny et al. which reported that COVID-19 is not deadly early in life, but mortality increases exponentially with age - which is the strongest predictor of mortality.

Understanding the effect of aging on the genome
EPFL scientists have measured the molecular footprint that aging leaves on various mouse and human tissues.

Muscle aging: Stronger for longer
With life expectancy increasing, age-related diseases are also on the rise, including sarcopenia, the loss of muscle mass due to aging.

Aging memories may not be 'worse, 'just 'different'
A study from the Department of Psychological & Brain Sciences in Arts & Sciences adds nuance to the idea that an aging memory is a poor one and finds a potential correlation between the way people process the boundaries of events and episodic memory.

A new biomarker for the aging brain
Researchers at the RIKEN Center for Biosystems Dynamics Research (BDR) in Japan have identified changes in the aging brain related to blood circulation.

Scientists invented an aging vaccine
A new way to prevent autoimmune diseases associated with aging like atherosclerosis, Alzheimer's disease, and Parkinson's disease was described in the article.

The first roadmap for ovarian aging
Infertility likely stems from age-related decline of the ovaries, but the molecular mechanisms that lead to this decline have been unclear.

Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.

Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.

Read More: Aging News and Aging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.