Nav: Home

First detection of a chiral molecule in space

June 14, 2016

A new study reports the first detection of chiral molecules in space, paving the way to understanding why chirality is "biased" on Earth. Our planet is home to a puzzle involving chiral molecules, those that, despite being mirror images of each other, don't exactly match; imagine a left-handed and right-handled glove, for example. They aren't interchangeable. Life on Earth is made of groups of such molecules that overwhelmingly share just one type of handedness, a phenomenon known as homochirality. The amino acids that make up the proteins in our bodies, for example, are all left-handed. To date, the source of this chiral bias on Earth has been a mystery, though some suggest insights might be found in space since it's thought that interstellar clouds contain the raw ingredients for the formation of our solar system. However, a chiral molecule has never been found in space. Now, Brett McGuire, P. Brandon Carroll and colleagues have used radio waves to detect a chiral molecule called propylene oxide in Sagittarius B2 North, a cloud of gas and dust roughly three million times the mass of the Sun and located in the center of our Milky Way galaxy. Chiral molecules of propylene oxide were detected in the cold, outer area of Sagittarius B2 North, rather than in the hot cores within the gas cloud. These results demonstrate the existence of an important new class of molecules in space. What's more, the discovery is an important first step in understanding if chirality in space can explain homochirality on Earth.

American Association for the Advancement of Science

Related Molecules Articles:

The inner lives of molecules
Researchers from Canada, the UK and Germany have developed a new experimental technique to take 3-D images of molecules in action.
Novel technique helps ID elusive molecules
Stuart Lindsay, a researcher at Arizona State University's Biodesign Institute, has devised a clever means of identifying carbohydrate molecules quickly and accurately.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
A new way to display the 3-D structure of molecules
Berkeley Lab and UC Berkeley Researchers have developed nanoscale display cases that enables new atomic-scale views of hard-to-study chemical and biological samples.
Bending hot molecules
Hot molecules are found in extreme environments such as the edges of fusion reactors.
At attention, molecules!
University of Iowa chemists have learned about a molecular assembly that may help create quicker, more responsive touch screens, among other applications.
Folding molecules into screw-shaped structures
An international research team describes the methods of winding up molecules into screw-shaped structures.
Artificial molecules
A new method allows scientists at ETH Zurich and IBM to fabricate artificial molecules out of different types of microspheres.
Molecules that may keep you young and alive
A new study may have uncovered the fountain of youth: plant extracts containing the six best groups of anti-aging molecules ever seen.
Fun with Lego (molecules)
A great childhood pleasure is playing with LegosĀ® and marveling at the variety of structures you can create from a small number of basic elements.

Related Molecules Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".