Nav: Home

A call for developing -- and using -- consensus standards to ensure the quality of cell lines

June 14, 2016

Mainstays of biomedical research, permanent lines of cloned cells are used to study the biology of health and disease and to test prospective medical therapies. Yet, all too often, these apparent pillars of bioscience and biotechnology crumble because they are crafted from faulty starting materials: misidentified or cross-contaminated cell lines.

Writing in the June 2016 issue of PLOS Biology, scientists from the National Institute of Standards and Technology (NIST) call for "community action" to assemble a "comprehensive toolkit for assuring the quality of cell lines," employed at the start of every study.

As important, they assert, more researchers and laboratories should use the tools that already exist. The NIST authors point to the American National Standard for authentication of human cell lines, which can be implemented to detect cell-line mix-ups and contamination before embarking on studies of cancer or other research using human cells.

Unfortunately, the four-year-old standard has not been widely adopted, even though cell-line authentication is a growing priority among funders and publishers of research.

Cell lines are populations of clones: genetically uniform animal or plant cells that are bioengineered to proliferate indefinitely in culture. First used in the early 1950s, these immortalized cell lines, each with different properties or features, now number well into the thousands and are used as simple models for studying disease and for testing the toxicity of compounds, producing biological drugs, and other applications.

Cell-line contamination and misidentification can undermine research results, spur additional studies of questionable value and waste research funds--accounting for a significant portion of the estimated $28 billion of irreproducible preclinical research conducted each year in the United States alone, according to a 2015 economic analysis.

A "high level of confidence" in published research results requires valid underpinning data on methods and materials--cell lines, instrument performance and more, explain the researchers, who work in the Biosystems and Biomaterials Division of NIST's Material Measurement Laboratory. "One might argue that these control data are as important as the study data themselves."

The critical importance of authenticating cell lines is widely recognized, due, in part, to publicized reports on the costs and damaging research consequences of cell-line contamination, which could have been avoided by confirming the identity of cell lines at the outset of research projects. The National Institutes of Health, other funding agencies and organizations, and many scientific journals have established requirements for reporting on the authentication and purity of cell lines.

Still, cell-line authentication is poorly reported. In 2015, the Global Biological Standards Institute reported that 52 percent of the life sciences researchers it surveyed never validate their cell lines.

The American National Standards Institute and American Type Culture Collection have developed, according to the authors, a "very thorough and helpful" standard on authenticating human cell lines using short tandem repeats--a DNA "fingerprinting" method borrowed from forensics in which cells can be identified by how many times particular DNA sequences repeat within their genome. "Lack of awareness," the NIST authors suspect, may account for limited use of the standard, as suggested by disappointingly low levels of human cell-line authentication in studies. They recommend using the standard in training and education programs, which may get a push from authentication requirements set by funders and publishers.

Comparable authentication standards are needed for mouse, rat and other important nonhuman cell lines used in research and biomanufacturing.

The authors advocate using inclusive, consensus standards-setting processes--like the one used for human cell-line authentication--to address these needs as well as to seize new opportunities that are arising with the commercialization of genome-sequencing technologies.

"Consensus standards that are produced in a careful, open and official process are an integral part of the success of this endeavor," they write. "Standards help to assure that data are sharable and can be the basis of decisionmaking and compliance."
-end-
Article: J.L. Almeida, K.D. Cole, A.L. Plant. June 14, 2016. Standards for Cell Line Authentication and Beyond. PLOS Biology. DOI: 10.1371/journal.pbio.1002476A

National Institute of Standards and Technology (NIST)

Related Biology Articles:

A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.
Biology's need for speed tolerates a few mistakes
In balancing speed and accuracy to duplicate DNA and produce proteins, Rice University researchers find evolution determined that speed is favored much more.
How to color a lizard: From biology to mathematics
Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.
Behavioral biology: Ripeness is all
In contrast to other members of the Drosophila family, the spotted-wing fly D. suzukii deposits its eggs in ripe fruits.
A systems biology perspective on molecular cytogenetics
Professor Henry Heng's team, from the medical school at Wayne State University, has published a perspective article titled A Systems Biology Perspective on Molecular Cytogenetics to address the issue.
Cell biology: Take the mRNA train
Messenger RNAs bearing the genetic information for the synthesis of proteins are delivered to defined sites in the cell cytoplasm by molecular motors.
Gravitational biology
Akira Kudo at Tokyo Institute of Technology(Tokyo Tech) and colleagues report in Scientific Reports, December 2016, that live-imaging and transcriptome analysis of medaka fish transgenic lines lead to immediate alteration of cells responsible for bone structure formation.
Biology's 'breadboard'
Understanding how the nervous system of the roundworm C. elegans works will give insights into how our vastly more complex brains function and is the subject of a paper in Nature Methods.
The use of Camelid antibodies for structural biology
The use of Camelid antibodies has important implications for future development of reagents for diagnosis and therapeutics in diseases involving a group of enzymes called serine proteases.
Misleading images in cell biology
Virtually all membrane proteins have been reported to be organized as clusters on cell surfaces, when in fact many of them are just single proteins which have been counted multiple times.

Related Biology Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".