Nav: Home

DNA in 'unbiased' model curls both ways

June 14, 2016

HOUSTON - (June 14, 2016) - In 1988, scientists in Switzerland looked through a microscope and saw something they didn't expect: two sections of an X-shaped chromosome spiraling in opposite directions. Now scientists at Rice University have confirmed that such anomalies are indeed possible.

Peter Wolynes, a theoretical biological physicist, and Bin Zhang, a postdoctoral associate, saw the same phenomenon in their sophisticated computer models of DNA, a finding they said should encourage deeper investigation of a basic biological process. Understanding such processes is important as researchers seek new ways to fight cancer and other diseases.

Their work is described today in Physical Review Letters.

Wolynes said biologists are learning much about how a cell functions during interphase -- the workaday part of its existence when it makes proteins and regulates other processes necessary to life. They also know much of what happens to a cell in the final stages of mitosis, when it divides.

Between those extremes lie mysteries. At the onset of mitosis, the meter-long strand of DNA in a cell's nucleus condenses into a pinpoint-sized blob. Microscope images show frantic activity as the DNA pushes, pulls and pulses, eventually organizing itself into 23 recognizable, X-shaped chromosomes before splitting.

The Rice scientists developed their simulation software to help understand these hidden phases as DNA folds into chromosomes, which they believe plays a central role in gene regulation, DNA replication and cell differentiation.

The simulation models probable crosslinks between genetic sequences in DNA to see how they interact. The researchers used experimental data that details likely contacts between the sequences. They believe these contacts play a critical part in mitosis, but the details remain hidden inside the compressed blob.

They were surprised when their simulations - based on "unbiased" experimental data - showed superhelices in the chromosomes that emerged from the blob that curled both to the right and to the left, matching the 1988 observation of sister chromatids (the original chromosome and its centrally joined copy) with opposite helical "handedness."

"That's why this was particularly cool to us," Wolynes said. "The handedness result just sort of fell out of the data even though we weren't looking for it.

"Think of the chromosome at mitosis as a bit like what would happen to a piece of sewing thread if you doubled it up and rolled it between your finger and your thumb," he said. "Depending on how you rolled your fingers, you would get right- or left-turning structures."

The thread itself has a helical arrangement of even smaller fibers, though the twist at one scale doesn't necessarily determine the twist at the larger scales. "But bundles of threads usually get twisted somehow," Wolynes said.

That "somehow" remains one of the mysteries, he said.

Since Crick and Watson described DNA's basic twisted-ladder form, the double helix has always turned to the right - and woe unto those who flipped the image.

But DNA is far more complex. The twisted ladder further coils around histone proteins to form nucleosomes. The strand of nucleosomes twists again, forming a cylindrical coil. And then those coils form coils, the superhelices that fold into recognizable chromosomes.

With the exception of Z-DNA, which turns to the left, it was commonly thought that evolution dictates the helix and its larger-scale structures always go right.

That is possibly still the case, but unlikely, Wolynes said. The Rice model didn't take into account the influence of proteins or other molecules in the nucleus that influence DNA organization, any of which may nudge the coils' chirality into right-handed compliance.

In a subsequent simulation, they increased the agitation of the DNA and saw a quite different result. Raising the temperature in the model forced the DNA to become solidly cylindrical rather than left- or right-handed. "The chirality was lost," Wolynes said. "That raises an interesting question: Does the cylinder form without chirality at first when the chromosome is duplicated and only later pick up its handedness?"

He and Zhang hope their technique will help find the mechanism that gives the superhelix its handedness and determine whether it makes any functional difference.

The study of DNA at Rice's Center for Theoretical Biological Physics is a natural extension of the center's groundbreaking work on proteins, Wolynes said. DNA during interphase is a single long molecule, and molecules and their constituent atoms always seek the easiest path to their natural structures, also known as their lowest energy states. Wolynes and his colleagues have led the study of energy landscapes; they pioneered the model to predict how a protein will find its lowest energy state based on the interaction energies -- the "folding funnel" -- of its components.

Now the lab has extended these ideas to study entire chromosomes. The task is much more difficult for the chromosome than for analyzing a protein, because there are billions of subunits in a strand of DNA as opposed to hundreds for a protein.

For that reason, the simulations are "coarse-grained" and take into account only a fraction of the atoms rather than the whole set. Computations are faster this way, yet they retain an accurate view of the entire system because the forces are based on experimental input data, the researchers said. They expect their method will be a useful tool in their continuing study of cellular processes.

Wolynes said the helical formation of the "X" chromatids -- the original target of the study -- can be traced back to the liquid crystalline nature of DNA. "Liquid crystals are oriented but remain fluid," he said. "The twist transition in the mitotic chromosome resembles what happens when a pixel in a liquid crystal display on your computer changes color."

The National Science Foundation (NSF) supported the research. Wolynes is the D.R. Bullard-Welch Foundation Professor of Science, a professor of chemistry, of biochemistry and cell biology, of physics and astronomy and of materials science and nanoengineering at Rice and a senior investigator of the NSF-funded Center for Theoretical Biological Physics at Rice. Zhang will join the Massachusetts Institute of Technology as an assistant professor in July.

The researchers used the NSF-supported DAVinCI supercomputer administered by Rice's Ken Kennedy Institute for Information Technology.
-end-
Read the abstract at http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.248101.

This news release can be found online at http://news.rice.edu/2016/06/14/dna-in-unbiased-model-curls-both-ways/

Follow Rice News and Media Relations via Twitter @RiceUNews

Video:

https://youtu.be/EnwoU8DI4yM

Animated GIF:

http://news.rice.edu/files/2016/06/0613_CHROMOSOMES-animgif-vsackv.gif

Related materials:

Chromosome-folding theory shows promise: http://news.rice.edu/2015/04/28/chromosome-folding-theory-shows-promise-3/

Molecular visualizations of DNA: https://www.youtube.com/watch?v=OjPcT1uUZiE

Wolynes Research Lab: http://wolynes.rice.edu/node/129

Center for Theoretical Biological Physics: https://ctbp.rice.edu

Rice Department of Bioengineering: http://bioe.rice.edu

Images for download:

http://news.rice.edu/files/2016/06/0613_CHROMOSOMES-1-web-21o5wps.jpg

Peter Wolynes, left, and Bin Zhang. (Credit: Jeff Fitlow/Rice University)

http://news.rice.edu/files/2016/06/0613_CHROMOSOMES-2-web-1qzeijw.jpg

A coarse-grained model shows DNA forming a helical chromosome during mitosis. Rice University scientists are using computer models to determine the forces that take place as DNA duplicates itself during cell mitosis. (Credit: Illustration by Bin Zhang/Rice University)

http://news.rice.edu/files/2016/06/0613_CHROMOSOMES-3-web-1vridkh.jpg

A simpler version of the chromosome model produced by a simulation at Rice University shows how the energies at work in the process of mitosis lead DNA to take a helical form. (Credit: Illustration by Bin Zhang/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Rice University

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".