Novel portable diagnostic tool pairs optical and gamma imaging

June 14, 2016

San Diego, Calif. - Bigger isn't always better, especially when it comes to a new and surprisingly portable molecular imaging system that combines optical imaging at the surface level and scintigraphy, which captures the physiological function of what lies beneath, announced developers at the 2016 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI).

The scintigraphy aspect of the scanner is comprised of a gamma camera that detects tiny radioactive signals emitted from the body after injection of a radionuclide, which interacts with specific physiological functions of the body, so that nuclear medicine physicians and their colleagues can extrapolate information from the radionuclide's activity.

Optical-gamma imaging could provide a multi-dimensional look at the body by allowing physicians to see a visual representation of molecular data in the same frame as optical images of the skin, the eyes and other surface organs. Unlike most hybrid imaging systems, which typically take up a lot of real estate in healthcare facilities, this technology is small enough to be easily portable.

"This research covers the first patient results obtained with the hybrid optical-gamma camera developed in the UK at the Universities of Leicester and Nottingham," said Alan Perkins, PhD, Radiological Sciences, University of Nottingham, Nottingham, United Kingdom. "This scanner has hand-held potential and can be used in a variety of settings, including the outpatient clinic, patient bedside, operating theatre and intensive care unit."

For this clinical pilot study, researchers imaged subjects undergoing routine molecular imaging procedures such as bone scans or imaging of the thyroid, eye or lymphatic system. The investigators optimized the image resolution and acquisition time to under five minutes by adopting a 1.5 millimeter-thick scintillator, which picks up gamma rays as they are emitted from within the body, and a 1 millimeter pin-hole collimator, which acts like an aperture to narrow focus on a particular field of view.

Results of the study showed that the optical-gamma camera was highly effective for imaging lymphatic and thyroid tissue, as well as drainage from the tear ducts, or lacrimal glands. Successful absorption of the radionuclides in these targeted areas was clearly seen in tandem with optical images of surface anatomy. This imaging system is still in development and requires further investigation before being made available to wider patient populations.
-end-
Scientific Paper 531: "A novel compact hybrid optical-gamma-camera: First clinical result," A. C. Perkins, A. H. Ng, Radiological Sciences, University of Nottingham, Nottingham, United Kingdom, and Radiation Health and Safety, Ministry of Health, Putrajaya, Malaysia; P. E. Blackshaw, S. Bugby, Medical Physics and Clinical Engineering, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom; J. E. Lees, Space Research Centre, University of Leicester, Leicester, United Kingdom; M. S. Alqatani, Radiological Sciences Department, King Khalid University, Riyadh, Saudi Arabia; L. Jambi, Radiological Sciences Department, King Saud University, Riyadh, Saudi Arabia, s," SNMMI's 63rd Annual Meeting, June 11-15, 2016, San Diego, Calif.

About the Society of Nuclear Medicine and Molecular Imaging

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to raising public awareness about nuclear medicine and molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated and helping provide patients with the best health care possible.

SNMMI's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snmmi.org.

Society of Nuclear Medicine

Related Molecular Imaging Articles from Brightsurf:

New technique offers higher resolution molecular imaging and analysis
The new approach from Northwestern Engineering could help researchers understand more complicated biomolecular interactions and characterize cells and diseases at the single-molecule level.

Molecular imaging offers insight into therapy outcomes for neuroendocrine tumor patients
A new proof-of-concept study published in the May issue of The Journal of Nuclear Medicine has demonstrated that molecular imaging can be used for identifying early response to 177Lu-DOTATATE treatment in neuroendocrine tumor patients.

Non-invasive imaging method spots cancer at the molecular level
Researchers for the first time have combined a powerful microscopy technique with automated image analysis algorithms to distinguish between healthy and metastatic cancerous tissue without relying on invasive biopsies or the use of a contrast dye.

Molecular imaging suggests smokers may have impaired neuroimmune function
Research presented at the 2019 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNM MI) shows preliminary evidence that tobacco smokers may have reduced neuroimmune function compared with nonsmokers.

Novel noninvasive molecular imaging for monitoring rheumatoid arthritis
A first-in-human Phase 1/Phase II study demonstrates that intravenous administration of the radiopharmaceutical imaging agent technetium-99m (99mTc) tilmanocept promises to be a safe, well-tolerated, noninvasive means of monitoring rheumatoid arthritis disease activity.

Improving molecular imaging using a deep learning approach
Generating comprehensive molecular images of organs and tumors in living organisms can be performed at ultra-fast speed using a new deep learning approach to image reconstruction developed by researchers at Rensselaer Polytechnic Institute.

Nanoplatform developed with three molecular imaging modalities for tumor diagnosis
Nanotechnology and biotechnology are bringing us increasingly closer to personalised cancer treatment.

Study suggests molecular imaging strategy for determining molecular classifications of NSCLC
Recent findings suggest a novel positron emission tomography (PET) imaging approach determining epidermal growth factor receptor (EGFR) mutation status for improved lung cancer patient management.

New imaging technique able to watch molecular dynamics of neurodegenerative diseases
Researchers have developed a fast and practical molecular-scale imaging technique that could let scientists view never-before-seen dynamics of biological processes involved in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis.

Combined optical and molecular imaging could guide breast-conserving surgery
Breast-conserving surgery is the primary treatment for early-stage breast cancer, but more accurate techniques are needed to assess resection margins during surgery to avoid the need for follow-up surgeries.

Read More: Molecular Imaging News and Molecular Imaging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.