Nav: Home

FAU researchers launch open innovation project

June 14, 2016

Under the title IMAGINE (Innovative Medical Application on Gait using Intelligent Engineering), neurologists at the university hospital in Erlangen are inviting engineers, doctors and teams including a doctor and an engineer to submit a proposed research project that uses the eGaIT prototype. The sensor-based gait analysis system was developed by a FAU consortium in Germany's Medical Valley innovation hub.

Proposals will be submitted via an online platform - the FAU Open Research Challenge - launched last year with funding from the German Research Foundation (DFG) and winner of the DFG's first international research marketing award.

The proposed research project should address patients' need - to be measured with eGaIT - generating an algorithmic solution. In other words, if you are a doctor, how would you integrate the system into your research? Define a clinical research question. If you are an engineer, how would you generate algorithms for clinical use? Define a novel algorithmic solution.

The proposals will be judged by a panel of experts. The best proposal will receive access to a three-month trial at their home location (or other if appropriate) using eGaIT.

More information about the FAU Open Research Challenge including deadlines will be published on http://www.openresearchchallenge.org in the coming weeks.

About eGaIT

Within the emerging field of health technology, sensor-based movement analysis systems are about to reach clinical applicability. Numerous studies address the technical development of motion sensors to objectively assess motor symptoms in movement disorders. However, the clinical usefulness in diagnostics and therapy of the computed instrumented parameters has not yet been shown for these technologies.

Gait impairment is the major characteristic of many musculoskeletal or neurologic movement diseases such as osteoarthrosis or Parkinson's disease. The ability to walk substantially limits the patient's quality of life and the characteristics are frequently used to clinically rate staging and progression of movement disorders. Nevertheless, the clinical gait assessment is rather descriptive and heavily depends on the rater's personal experience. The cyclic nature and unique biomechanic patterns of gait make it the most suitable movement for automated instrumented assessment.

An interdisciplinary consortium of medical, technological and engineering expertise at FAU has developed a mobile sensor based gait analysis system (eGaIT) providing objective gait parameters for diagnostical application and individual therapy monitoring in movement disorders. Thereby, the eGaIT system allows an objective rater-independent and individualized assessment of motor symptoms using inertial sensors (accelerometer, gyroscope) and machine learning methods.

eGaIT consists of three elements:
  • A customized shoe with laterally attached inertial sensors (Shimmer Sensing). The sensors collect gait data, which are wirelessly (Bluetooth) transferred to a tablet with installed gait recording software and machine learning analysis framework.
  • The gait recording software offers a variety of standardized movement test sets, which can be selected by the therapist. As the core of our system, a specifically designed analysis framework provides the clinician instantly with validated gait parameters such as stride length, gait speed, foot clearance, heel strike, toe off, swing and stance phases, etc. Moreover, it provides the basis for machine learning of gait signatures characteristic for specific motor symptoms or diagnoses of movement disorders using large amounts of gait sensor data.
  • The data and analysis results can be wirelessly transmitted to a secure online cloud platform, so that therapists get a full overview of all gait parameters for the individual longitudinal monitoring of their patients. Furthermore the platform is designed for multicenter applications, enabling both integration of standard care units and multicenter study support.
-end-


University of Erlangen-Nuremberg

Related Data Articles:

Discrimination, lack of diversity, & societal risks of data mining highlighted in big data
A special issue of Big Data presents a series of insightful articles that focus on Big Data and Social and Technical Trade-Offs.
Journal AAS publishes first data description paper: Data collection and sharing
AAS published its first data description paper on June 8, 2017.
73 percent of academics say access to research data helps them in their work; 34 percent do not publish their data
Combining results from bibliometric analyses, a global sample of researcher opinions and case-study interviews, a new report reveals that although the benefits of open research data are well known, in practice, confusion remains within the researcher community around when and how to share research data.
Designing new materials from 'small' data
A Northwestern and Los Alamos team developed a novel workflow combining machine learning and density functional theory calculations to create design guidelines for new materials that exhibit useful electronic properties, such as ferroelectricity and piezoelectricity.
Big data for the universe
Astronomers at Lomonosov Moscow State University in cooperation with their French colleagues and with the help of citizen scientists have released 'The Reference Catalog of galaxy SEDs,' which contains value-added information about 800,000 galaxies.
What to do with the data?
Rapid advances in computing constantly translate into new technologies in our everyday lives.
Why keep the raw data?
The increasingly popular subject of raw diffraction data deposition is examined in a Topical Review in IUCrJ.
Infrastructure data for everyone
How much electricity flows through the grid? When and where?
Finding patterns in corrupted data
A new 'robust' statistical method from MIT enables efficient model fitting with corrupted, high-dimensional data.
Big data for little creatures
A multi-disciplinary team of researchers at UC Riverside has received $3 million from the National Science Foundation Research Traineeship program to prepare the next generation of scientists and engineers who will learn how to exploit the power of big data to understand insects.

Related Data Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...