Nav: Home

FAU researchers launch open innovation project

June 14, 2016

Under the title IMAGINE (Innovative Medical Application on Gait using Intelligent Engineering), neurologists at the university hospital in Erlangen are inviting engineers, doctors and teams including a doctor and an engineer to submit a proposed research project that uses the eGaIT prototype. The sensor-based gait analysis system was developed by a FAU consortium in Germany's Medical Valley innovation hub.

Proposals will be submitted via an online platform - the FAU Open Research Challenge - launched last year with funding from the German Research Foundation (DFG) and winner of the DFG's first international research marketing award.

The proposed research project should address patients' need - to be measured with eGaIT - generating an algorithmic solution. In other words, if you are a doctor, how would you integrate the system into your research? Define a clinical research question. If you are an engineer, how would you generate algorithms for clinical use? Define a novel algorithmic solution.

The proposals will be judged by a panel of experts. The best proposal will receive access to a three-month trial at their home location (or other if appropriate) using eGaIT.

More information about the FAU Open Research Challenge including deadlines will be published on in the coming weeks.

About eGaIT

Within the emerging field of health technology, sensor-based movement analysis systems are about to reach clinical applicability. Numerous studies address the technical development of motion sensors to objectively assess motor symptoms in movement disorders. However, the clinical usefulness in diagnostics and therapy of the computed instrumented parameters has not yet been shown for these technologies.

Gait impairment is the major characteristic of many musculoskeletal or neurologic movement diseases such as osteoarthrosis or Parkinson's disease. The ability to walk substantially limits the patient's quality of life and the characteristics are frequently used to clinically rate staging and progression of movement disorders. Nevertheless, the clinical gait assessment is rather descriptive and heavily depends on the rater's personal experience. The cyclic nature and unique biomechanic patterns of gait make it the most suitable movement for automated instrumented assessment.

An interdisciplinary consortium of medical, technological and engineering expertise at FAU has developed a mobile sensor based gait analysis system (eGaIT) providing objective gait parameters for diagnostical application and individual therapy monitoring in movement disorders. Thereby, the eGaIT system allows an objective rater-independent and individualized assessment of motor symptoms using inertial sensors (accelerometer, gyroscope) and machine learning methods.

eGaIT consists of three elements:
  • A customized shoe with laterally attached inertial sensors (Shimmer Sensing). The sensors collect gait data, which are wirelessly (Bluetooth) transferred to a tablet with installed gait recording software and machine learning analysis framework.
  • The gait recording software offers a variety of standardized movement test sets, which can be selected by the therapist. As the core of our system, a specifically designed analysis framework provides the clinician instantly with validated gait parameters such as stride length, gait speed, foot clearance, heel strike, toe off, swing and stance phases, etc. Moreover, it provides the basis for machine learning of gait signatures characteristic for specific motor symptoms or diagnoses of movement disorders using large amounts of gait sensor data.
  • The data and analysis results can be wirelessly transmitted to a secure online cloud platform, so that therapists get a full overview of all gait parameters for the individual longitudinal monitoring of their patients. Furthermore the platform is designed for multicenter applications, enabling both integration of standard care units and multicenter study support.

University of Erlangen-Nuremberg

Related Data Articles:

Storing data in music
Researchers at ETH Zurich have developed a technique for embedding data in music and transmitting it to a smartphone.
Life data economics: calling for new models to assess the value of human data
After the collapse of the blockchain bubble a number of research organisations are developing platforms to enable individual ownership of life data and establish the data valuation and pricing models.
Geoscience data group urges all scientific disciplines to make data open and accessible
Institutions, science funders, data repositories, publishers, researchers and scientific societies from all scientific disciplines must work together to ensure all scientific data are easy to find, access and use, according to a new commentary in Nature by members of the Enabling FAIR Data Steering Committee.
Democratizing data science
MIT researchers are hoping to advance the democratization of data science with a new tool for nonstatisticians that automatically generates models for analyzing raw data.
Getting the most out of atmospheric data analysis
An international team including researchers from Kanazawa University used a new approach to analyze an atmospheric data set spanning 18 years for the investigation of new-particle formation.
Ecologists ask: Should we be more transparent with data?
In a new Ecological Applications article, authors Stephen M. Powers and Stephanie E.
Should you share data of threatened species?
Scientists and conservationists have continually called for location data to be turned off in wildlife photos and publications to help preserve species but new research suggests there could be more to be gained by sharing a rare find, rather than obscuring it, in certain circumstances.
Using light for next-generation data storage
Tiny, nano-sized crystals of salt encoded with data using light from a laser could be the next data storage technology of choice, following research by Australian scientists.
Futuristic data storage
The development of high-density data storage devices requires the highest possible density of elements in an array made up of individual nanomagnets.
Making data matter
The advent of 3-D printing has made it possible to take imaging data and print it into physical representations, but the process of doing so has been prohibitively time-intensive and costly.
More Data News and Data Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.