Nav: Home

Genetic secrets of algae provide vital insight into coral bleaching

June 14, 2016

A UNSW Australia-led team of researchers has identified genes that allow some algae living in corals to tolerate higher ocean temperatures than others. The genes could act as markers to understand the risk of coral bleaching in different areas of tropical reefs including the Great Barrier Reef.

"Tropical corals cannot survive without the Symbiodinium algae that live inside them. These tiny, photosynthetic organisms can provide the corals with more than 90 per cent of their food," says study first author and UNSW PhD student Rachel Levin.

Increased water temperatures stress the algae, causing them to produce an excess of toxic chemicals, called reactive oxygen species, which damage both the algae and the corals. As a result, corals expel the heat-stressed algae, become bleached white, and starve to death unless they are recolonised by new algae.

"For the first time, we have uncovered the mechanism that explains why some algae can withstand higher temperatures and avoid bleaching," says Levin. "We found they can switch on genes to produce proteins that neutralise the toxic chemicals."

The study is published in the high impact journal Molecular Biology and Evolution. The research team includes UNSW Professor Peter Steinberg, Director of the Sydney Institute of Marine Science, and Professor Madeleine van Oppen of the Australian Institute of Marine Science and the University of Melbourne.

"As marine systems are increasingly challenged by multiple environmental threats, it is critical that we not just describe the severity of those threats, but also understand the capacity of marine organisms and ecosystems to adapt to and overcome those threats," says Professor Steinberg. The researchers compared two cultures of algae originally isolated from coral located at a warmer location and at a cooler location on the Great Barrier Reef. The algae from the cooler location become damaged and are expelled by corals under heat stress, but the algae isolated from the warmer location remain healthy under heat stress and are not expelled from the coral.

The team studied the algal genes to uncover those that are activated or de-activated over the course of a heat-stress experiment conducted in the laboratory. The microscopic algae have more genes than humans do.

"We found that only the algae from the warmer reef can activate specific types of genes when under heat stress to counter the damaging effects of the reactive oxygen species," says Levin. "The risk of coral bleaching in different areas on the Great Barrier Reef could be assessed by using these genes as markers."

Professor van Oppen says the study produced another surprising result. "We also discovered that, under stress, both types of algae may switch from their normal asexual mode of reproduction to sexual reproduction.

"Sexual reproduction helps speed up evolution and may allow some algae to adapt quickly enough to tolerate the rise in sea surface temperature. This could be a natural 'golden ticket' that allows some corals to survive a bleaching event," she says.

In an unprecedented event, a large part of the Great Barrier Reef has undergone bleaching this year due to unusually high sea surface temperatures, with the most recent estimates indicating that about a quarter of corals have already been lost to bleaching-related mortality across the reef. Future surveys may reveal whether surviving corals contain algae that are able to activate the heat-tolerant genes unveiled in this study.
-end-
Media contacts:

Rachel Levin
UNSW PhD candidate
r.levin@student.unsw.edu.au

Professor Peter Steinberg
UNSW/SIMS
p.steinberg@unsw.edu.au

Professor Madeleine van Oppen
AIMS/University of Melbourne
madeleine.van@unimelb.com.au

Deborah Smith
UNSW Science media officer
612-9385-7307, 61-478-492-060
deborah.smith@unsw.edu.au

University of New South Wales

Related Stress Articles:

Captive meerkats at risk of stress
Small groups of meerkats -- such as those commonly seen in zoos and safari parks -- are at greater risk of chronic stress, new research suggests.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
Some veggies each day keeps the stress blues away
Eating three to four servings of vegetables daily is associated with a lower incidence of psychological stress, new research by University of Sydney scholars reveals.
Prebiotics may help to cope with stress
Probiotics are well known to benefit digestive health, but prebiotics are less well understood.
Building stress-resistant memories
Though it's widely assumed that stress zaps a person's ability to recall memory, it doesn't have that effect when memory is tested immediately after a taxing event, and when subjects have engaged in a highly effective learning technique, a new study reports.
Stress during pregnancy
The environment the unborn child is exposed to inside the womb can have a major effect on her or his development and future health.
New insights into how the brain adapts to stress
New research led by the University of Bristol has found that genes in the brain that play a crucial role in behavioural adaptation to stressful challenges are controlled by epigenetic mechanisms.
Uncertainty can cause more stress than inevitable pain
Knowing that there is a small chance of getting a painful electric shock can lead to significantly more stress than knowing that you will definitely be shocked.
Stress could help activate brown fat
Mild stress stimulates the activity and heat production by brown fat associated with raised cortisol, according to a study published today in Experimental Physiology.
Experiencing major stress makes some older adults better able to handle daily stress
Dealing with a major stressful event appears to make some older adults better able to cope with the ups and downs of day-to-day stress.

Related Stress Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".