Nav: Home

New analytical technology to quantify anti-cancer drugs inside cancer cells

June 14, 2016

University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond. Using mass spectrometry, an analytical instrument for sensitive detection and accurate identification of molecules, the team will quantitate the amount of anti-cancer drugs present in individual cancer cells, including those in bladder cancer cells isolated from patients undergoing chemotherapy. The method will provide a means to establish ideal dosing regimens that delivers effective chemotherapeutic concentrations to patients with minimal toxicities.

Anthony Burgett and Zhibo Yang, assistant professors in the Department of Chemistry and Biochemistry in the OU College of Arts and Sciences, and affiliates of the Stephenson Cancer Center, in collaboration with Jonathan E. Heinlen, M.D., assistant professor in the Department of Urology at the OU Health Sciences Center and a Stephenson Cancer Center researcher, will fully develop the novel first-in-class mass spectrometric technology--the Single Probe--capable of performing single-cell mass spectrometry of compounds inside of living single cancer cells as a bioanalytical method to improve efficacy and toxicities of chemotherapy in patients.

"One clear lesson from scientific progress is that new technologies often lead to major advances. This new single cancer cell mass spectrometry analysis could propel us forward to a new frontier in biological analysis, and we are excited to see where this technology, with its possible scientific and biomedical applications, could lead," said Burgett.

Currently, there are no clinical bioanalytical methods capable of determining the concentration of chemotherapeutic agents inside of a patient's individual cancer cells. A single-cell analysis method that could also assess the effectiveness of the patient-administered chemotherapeutic on the health of the individual cancer cells would give real-time relevant information about the therapeutic efficacy. Using the Single-probe, a miniaturized device with a sampling tip smaller than a cell, anti-cancer drugs inside a cancer cell can be extracted and quantified using mass spectrometry.

"Bladder cancer is a horrible disease with high costs of treatment--financially and in terms of quality of life of patients," said Dr. Heinlen. "Typically, we only know the effects of treatment weeks to months after the administration of cytotoxic chemotherapy. This technique could possibly give us insight into treatment efficacy as soon as the dose is administered. Those patients who have undergone several cycles of chemotherapy only to find the treatment was ineffective would see this as a major benefit."

If successful, this innovative research will produce a method capable of quantitating the intracellular level of a standard-of-care chemotherapeutic agent in patient single cancer cells for the first time. Further, this project would mark the first time a single-cell mass spectrometry method has been successfully used in a clinical setting, and this advancement would provide a potentially novel and powerful tool for the improved treatment of cancer patients in the state of Oklahoma and beyond.
-end-
For more information about the new analytical technology developed at the Stephenson Life Sciences Research Center on the OU Research Campus, please contact anthony.burgett@ou.edu or zhibo.yang@ou.edu. For information about bladder cancer cells isolated from Stephenson Cancer Center patients, contact Jonathan-Heinlen@ouhsc.edu.

University of Oklahoma

Related Chemotherapy Articles:

Chemotherapy drug may increase vulnerability to depression
A chemotherapy drug used to treat brain cancer may increase vulnerability to depression by stopping new brain cells from growing, according to a new King's College London study out today in Translational Psychiatry.
Sperm changes documented years after chemotherapy
A Washington State University researcher has documented epigenetic changes in the sperm of men who underwent chemotherapy in their teens.
Depressed patients are less responsive to chemotherapy
A brain-boosting protein plays an important role in how well people respond to chemotherapy, researchers report at the ESMO Asia 2016 Congress in Singapore.
Breast cancer study predicts better response to chemotherapy
It is known from previous research that the ER-beta estrogen receptor often has a protective effect.
Personalizing chemotherapy to treat pediatric leukemia
A team of UCLA bioengineers has demonstrated that its technology may go a long way toward overcoming the challenges of treatment for acute lymphoblastic leukemia, among the most common types of cancer in children, and has the potential to help doctors personalize drug doses.
More Chemotherapy News and Chemotherapy Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.