Nav: Home

Researchers improve biosensors to detect E. coli

June 14, 2016

PULLMAN, Wash. - Washington State University researchers have developed a portable biosensor that makes it easier to detect harmful bacteria.

The research team, led by Yuehe Lin, professor in the School of Mechanical and Materials Engineering, recently published the work in the journal, Small.

As in the case of several recent food recalls, harmful pathogens are most often only discovered when people start getting sick. Researchers have been working to develop better biosensors that could quickly, accurately and automatically detect everything from cancer biomarkers in the blood to harmful bacteria in the environment. Even tiny amounts of pathogens can create serious health risks, but the available sensors are unable to quickly and easily detect these quantities.

The WSU research team created a simple sensor that is able to detect and amplify the signal of the food pathogen Escherichia coli (E. coli) 0157:H7, which can cause severe diarrhea and kidney damage in people.

The key to a better sensor is maintaining a large amount of enzyme activity for detecting antigens in a sample. To address this issue, the researchers developed a particle at the nanoscale that includes organic and inorganic components and looks like a tiny flower. Smaller than a speck of dust and made up of a group of molecules, the nano-sized flower and petals provide a large surface area for immobilizing the highly active enzymes that are needed to detect the bacteria at low levels.

The nanoflower is able to recognize the bacteria and amplify its signal so that it can be seen with a simple handheld pH meter or pH indicator paper strip.

"We want to take these nanoflowers and create a simple-to-use, handheld device that anyone can use anywhere," said Lin. "It'll be as simple as using a pregnancy test strip or a glucose meter."

The researchers have filed a patent for the handheld device concept and are working to switch out components of the nanoflower to detect disease markers as well as other pathogens such as salmonella.

The team includes Lin and his group at the WSU Voiland College of Engineering and Architecture and his collaborator, associate professor Meijun Zhu from WSU's School of Food Science. The work was supported by the U.S. Centers for Disease Control and Prevention/National Institute for Occupational Safety and Health.

The research is in keeping with WSU's Grand Challenges, a suite of research initiatives aimed at large societal issues. It is particularly relevant to the challenge of Sustaining Health and its theme of changing the course of disease.
-end-


Washington State University

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...