Nav: Home

New technology will enable properties to share solar energy

June 14, 2017

IN the UK alone, some 1.5 million homes are equipped with solar panels, and it has been estimated that by 2020 the figure could soar to 10 million, with the prospect of lower energy bills for consumers and massive reductions in CO2 emissions. Now, a University of Huddersfield researcher is developing new technologies that could enable clusters of houses to share their solar energy, rather than simply exporting surplus electricity to the national grid. Also, new systems for fault detection will enable householders to monitor and maintain the efficiency of their panels.

Prize-winning PhD student Mahmoud Dhimish is spearheading the project, supervised by lecturers with expertise in high performance computing, engineering and electrical supply. The research is aided by a solar panel, or photovoltaic (PV) system that has been installed at the University by its School of Computing and Engineering.

"Currently, individual consumers generate electricity from their PV installations and if they are unable to use it, they export it to the network. PV outputs vary unpredictably - as do the electricity demands of each consumer - so supply and demand is difficult to match," said Mahmoud Dhimish.

Therefore, his doctoral research - which has already led to a sequence of articles and presentations - is investigating the possibility of reducing the need to export unused energy to the grid by making use of "demand diversity" among adjacent dwellings.

A form of energy storage shared by the connected houses and the use of the 'Internet of Things' to monitor and manage their electricity demands will form part of the solution.

A major dimension of Mahmoud's work is the development of a new algorithm that will enable the rapid detection of faults in PV installations. He has carried out pioneering work on the impact of micro-cracks in the performance of solar panels, using the facilities of the University of Huddersfield's High Performance Computing Research Group to carry out his analysis.

The research could lead to the development of monitoring units operated directly by households or remotely via the Cloud.

Outputs describing the work have included the recent article Fault detection algorithm for grid-connected photovoltaic plants, in the journal Solar Energy. It is co-authored by Mahmoud Dhimish and his PhD supervisor Dr Violeta Homes, who is Subject Area Leader for Electronic and Electrical Engineering at the University of Huddersfield, where she leads the HPC Research Group.

Also supervising are Dr Bruce Mehrdadi, who is MSc Engineering Programme Leader, and lecturer Mark Dales, whose career has included 30 years in the electricity supply industry, and who took charge of the installation of the School of Computing and Engineering's own solar panels.

Mahmoud Dhimish - who is Jordanian-Russian - earned awards that included a Chancellor's Prize for his University of Huddersfield MSc in Electronic and Communication Engineering. He was immediately awarded a scholarship for his PhD research in renewable energy system. He has further co-authored articles awaiting publication and has also lectured on the subject to undergraduates.
-end-


University of Huddersfield

Related Solar Energy Articles:

Air pollution casts shadow over solar energy production
Global solar energy production is taking a major hit due to air pollution and dust.
Freshwater from salt water using only solar energy
A federally funded research effort to revolutionize water treatment has yielded a direct solar desalination technology that uses energy from sunlight alone to heat salt water for membrane distillation.
New technology will enable properties to share solar energy
New technology will enable properties to share solar energy and will mean low energy bills for consumers.
Solar paint offers endless energy from water vapor
Researchers in Melbourne, Australia, have developed a compound that draws moisture from the air and splits it into oxygen and hydrogen.
Solar cell design with over 50 percent energy-conversion efficiency
Solar cells convert the sun's energy into electricity by converting photons into electrons.
Bio-inspired energy storage: A new light for solar power
Inspired by the western Swordfern, a groundbreaking prototype could be the answer to the storage challenge still holding solar back as a total energy solution.
The economic case for wind and solar energy in Africa
To meet skyrocketing demand for electricity, African countries may have to triple their energy output by 2030.
The beating heart of solar energy
Using solar cells placed under the skin to continuously recharge implanted electronic medical devices is a viable one.
How plants manage excess solar energy
Life on earth largely depends on the conversion of light energy into chemical energy through photosynthesis by plants.
New maps show where to generate solar energy in South Carolina
Amanda Farthing and the team at Clemson University created maps showing which lands in South Carolina would be most suitable for generating solar energy at utility scale.

Related Solar Energy Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#518 With Genetic Knowledge Comes the Need for Counselling
This week we delve into genetic testing - for yourself and your future children. We speak with Jane Tiller, lawyer and genetic counsellor, about genetic tests that are available to the public, and what to do with the results of these tests. And we talk with Noam Shomron, associate professor at the Sackler School of Medicine at Tel Aviv University, about technological advancements his lab has made in the genetic testing of fetuses.