Nav: Home

The glue that keeps cells together

June 14, 2017

Controlled adhesion and division are crucial for our body's cells. This is the case, for instance, when the organs develop in an embryo or when broken skin is repaired during the healing process.

The importance of close cell-cell adhesion becomes evident especially when it is dysfunctional, for example when cells become loose in a tumour and break free. The tumour cell complex tends to dissolve in this case and create metastases.

Cadherins as key actors

The cadherin proteins assume a central role in the above mentioned examples. Located in the cell membranes, they are capable of creating strong bonds both among themselves and with the cadherins of other cells. A bond between two cadherin molecules of two cells triggers the formation of extensive contact zones.

The process of establishing and detaching contacts seems to be much more dependent on purely physical effects than thought previously. This is shown by computer simulations and experiments published in "Nature Physics" by Dr Susanne Fenz from the University of Würzburg's Biocentre with colleagues from Jülich, Stuttgart, Erlangen and Marseilles.

Connecting model membranes

The biophysicist brought together model membranes containing cadherin and then selectively changed different physical parameters that influence the membrane's fluctuation behaviour such as the concentration of sugar and salt.

"We observed that already very small changes had a huge impact on the formation and growth of cell-cell contacts," says Dr Fenz, who leads a junior research group at the Department for Cell and Developmental Biology (Zoology I). "So it is possible to regulate a biological process by changing only physical parameters such as the temperature or local lipid composition of the membrane."

But according to Fenz, it is still doubtful to what extent the results for the model membranes can be transferred to living systems. "We will have to confirm the relevance of our observations in living systems," says Susanne Fenz.

Focus on pathogens that cause sleeping sickness

The Würzburg researcher has a general interest in the biophysics of membranes. For example, she also studies the pathogens that cause the sleeping sickness. The protozoa of the species Trypanosoma are one of Professor Markus Engstler's focal areas of research; he is the head of the Department for Zoology I at the Julius-Maximilians-Universität (JMU) in Würzburg, Germany.

What's special about the cell membrane of Trypanosoma is that it is densely populated with a protein shell that is varied continuously in a population. This high variability of the protein shell allows the pathogens to hide efficiently from the immune systems of animals and humans.
-end-


University of Würzburg

Related Sleeping Sickness Articles:

Severe morning sickness associated with higher risk of autism
Children whose mothers had hyperemesis gravidarum -- a severe form of a morning sickness -- during pregnancy were 53% more likely to be diagnosed with autism spectrum disorder, according to Kaiser Permanente research published in the American Journal of Perinatology.
Scientists identify a key gene in the transmission of deadly African sleeping sickness
An international team of life scientists has identified a key gene in the transmission of African sleeping sickness -- a severe disease transmitted by the bite of an infected, blood-sucking tsetse fly, which is common in Sub-Saharan Africa.
Marijuana for morning sickness? It's not great for baby's brain
With a growing number of states legalizing recreational or medical marijuana, more women are using the drug during pregnancy, in part due to its reported ability to relieve morning sickness.
New therapeutic approach to combat African sleeping sickness
Scientists working in a range of disciplines joined forces to identify a new approach to combat African sleeping sickness.
Sleeping sickness parasite uses multiple metabolic pathways
Parasitic protozoa called trypanosomes synthesize sugars using an unexpected metabolic pathway called gluconeogenesis, according to a study published December 27 in the open-access journal PLOS Pathogens by David Horn of the University of Dundee in the UK, and colleagues.
Decoding sleeping sickness signals could aid quest for treatments
Scientists have discovered how the parasite that causes sleeping sickness initiates a physical change in order to spread the disease.
Clemson researchers reveal secrets of parasite that causes African sleeping sickness
A team of Clemson University researchers wants to protect humans and other mammals from the debilitating and even deadly effects of African sleeping sickness.
Motion sickness vs. cybersickness: Two different problems or the same condition?
Contrary to previous research, severe motion sickness and cybersickness -- a type of motion sickness that stems from exposure to virtual reality -- may be considered the same clinical condition, according to researchers.
Virtual reality motion sickness may be predicted and counteracted
Researchers at the University of Waterloo have made progress towards predicting who is likely to feel sick from virtual reality technology.
Sleeping sickness: Pathogens camouflage themselves with sugar
It has long been known that the pathogens causing sleeping sickness evade the immune system by exchanging their surface proteins.
More Sleeping Sickness News and Sleeping Sickness Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab