Nav: Home

Changing the color of laser light on the femtosecond time scale

June 14, 2017

How can the color of laser light be changed? One popular method to achieve this is the so-called second harmonic generation (SHG) effect, which doubles the frequency of light and hence changes its color. However, observing this nonlinear effect requires a polar crystal in which inversion symmetry is broken. For this reason, identifying crystals that can elicit strong SHG has been an important research topic, so that their properties can be exploited for applications in materials science.

Observation of nonlinear optical phenomena like SHG requires a finite second-order electric susceptibility, which occurs within any polar structure without inversion symmetry, and strong laser light or pulses. In the perovskite-type cobalt oxide BiCoO3 used in this work, an apical oxygen shift along the c-axis and a Co-O5 pyramid are present in the unit cell, resulting in symmetry breaking and a large spontaneous polarization at room temperature. For the laser pulse, the strong electromagnetic wave with an electric field up to ~1 MV/cm in the THz energy region was developed by Hideki Hirori and his team at iCeMS and was used to achieve ultrafast control of BiCoO3's nonlinear behavior.

Yoichi Okimoto at Tokyo Institute of Technology and colleagues were specifically interested in understanding how the intensity of SHG from the BiCoO3 crystal changes when irradiated with a THz (i.e., far-infrared) laser pulse at room temperature. Notably, an unprecedented enhancement of SHG by more than 50 % was observed, indicating that employing THz laser light in this fashion can significantly improve the figure of merit of nonlinear crystals. In addition, this effect occurs on the 100 femtosecond (10-13 s) time scale, suggesting possible application to ultrafast optoelectronic devices.

Mechanistically, the ultrafast enhancement of the second harmonic signal can be understood in terms of d-d transitions from occupied to unoccupied states that exist around the wide energy band of the applied THz pulse. The photoexcited electrons elongate the apical oxygen atoms of the Co-O5 pyramids in the crystal structure via electron-phonon coupling, thereby augmenting its polar structure (and hence second-order electric susceptibility).

Future investigations of the photoexcited state of BiCoO3 and other polar oxide materials will consider higher-order nonlinear optical responses as well as ultrafast structural measurements using the THz pulse to elucidate additional mechanistic details of these fascinating materials.

Tokyo Institute of Technology

Related Laser Pulse Articles:

Pulse waves measured at the wrist uncover often-missed artery changes in menopausal women
Measuring a menopausal woman's pulse wave at her wrist can detect circulatory system changes that aren't evident with blood pressure readings.
Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.
X-ray pulse detected near event horizon as black hole devours star
The findings, reported in the journal Science, are the first demonstration of a tidal disruption flare being used to estimate a black hole's spin.
New China and US studies back use of pulse oximeters for assessing blood pressure
Fast and easy blood pressure monitoring could soon be at your fingertips -- literally -- thanks to new University of British Columbia research that showed BP can be assessed by a fingertip oximeter, a tool not generally used for that purpose.
New laser advances
Lasers are poised to take another step forward: Researchers at Case Western Reserve University, in collaboration with partners around the world, have been able to control the direction of a laser's output beam by applying external voltage.
Intense microwave pulse ionizes its own channel through plasma
More than 30 years ago, researchers theoretically predicted the ionization-induced channeling of an intense microwave beam propagating through a neutral gas (>103 Pa) -- and now it's finally been observed experimentally.
Attosecond pulse leads to highest molecular level probe resolution
Devising a source of ultra-fast X-ray pulsating in the attosecond range is no mean feat.
Researchers develop irregular-shaped laser to tackle laser instability
An international research team of scientists from Nanyang Technological University, Singapore, Yale University and Imperial College London has designed a new way to build high-powered lasers that could result in stable beams, overcoming a long-standing limitation in conventional lasers.
Physicists fight laser chaos with quantum chaos to improve laser performance
To tame chaos in powerful semiconductor lasers, which causes instabilities, scientists have introduced another kind of chaos.
New research collection targets insect pests of pulse crops
Around the world, pulse crops -- such as beans, peas, chickpeas, and lentils -- are an important staple in the modern food supply, and their cultivation is growing in the United States and many other Western countries.
More Laser Pulse News and Laser Pulse Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at