Nav: Home

Food or fraud?

June 14, 2017

Is the food on the shelf really that what is written on the label? Its DNA would give it away, but the DNA barcoding technology, which can be used for this purpose, is labor-intensive. Now, in the journal Angewandte Chemie, Italian scientists have introduced a simplified assay coined NanoTracer. Combining DNA barcoding with nanotechnology, it requires neither expensive tools nor extremely skilled personnel, but just the naked eye to identify a color change.

The DNA barcoding technology identifies an organism by a short unique DNA sequence, the "barcode". This barcode used for animal species-and thus for meat products-is the sequence of a gene of mitochodria, which are cell organelles. Its sequence tells the examiner if the product on the shelf contains exactly the species that is declared on the label, not a substituted or a diluted one. However, DNA barcoding requires elaborate procedures and takes time. Therefore, Pier Paolo Pompa at the Italian Institute of Technology IIT, Genoa, and his colleagues from University of Milano-Bicocca (M. Labra), Italy, have developed a much simpler version of the test, termed NanoTracer, which requires fewer and cheaper reagents, scarce instrumentation, and features a simple color change as its output.

Its main concept is the reduction of the long barcode regions to short subregions, in which the species nevertheless show enough divergence. Shorter sequences have the advantage that even DNA can be identified that is no longer intact--as it happens in finished foods. The short sequences are then amplified by a polymerase chain reaction process. This step includes the second innovation. The authors explain: "Our assay includes a universal sequence, which serves to prime the aggregation of (universal) DNA-functionalized gold nanoparticles, with consequent red-to-violet color change." Or, in other words, if the sample DNA sequence matches that of the simplified barcode primers, the respective DNA segment is amplified, and the added nanogold agent aggregates, turning the test solution's color from red to violet.

Using their assay, the scientists tested European perch, which is often substituted by cheaper fish species, and saffron powder, a high-value spice, which is frequently diluted with other herbs for economic gain. Both products were distinctly identified with NanoTracer, and the presence of substitutes or cheaper diluents was detected. As the authors point out, their simplified assay is rapid (it takes less than three hours) and sensitive, uses raw food material, is parallelizable, involves simple low-cost technology and materials, and thus can be performed in decentralized simple laboratories at low cost.
-end-
About the Author

Pier Paolo Pompa is a tenured Senior Scientist and Head of the Nanobiointeractions & Nanodiagnostics research group of Istituto Italiano di Tecnologia (IIT), Genoa, Italy. His research is highly interdisciplinary with a focus on the interaction between nanomaterials and living systems with applications ranging from nanotechnology to biomedicine.

https://www.iit.it/people/pierpaolo-pompa

Wiley

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#518 With Genetic Knowledge Comes the Need for Counselling
This week we delve into genetic testing - for yourself and your future children. We speak with Jane Tiller, lawyer and genetic counsellor, about genetic tests that are available to the public, and what to do with the results of these tests. And we talk with Noam Shomron, associate professor at the Sackler School of Medicine at Tel Aviv University, about technological advancements his lab has made in the genetic testing of fetuses.