Nav: Home

Bacteria from cystic fibrosis patient could help thwart antibiotic-resistant TB

June 14, 2017

The number of drug-resistant tuberculosis (TB) cases is rising globally. But a newly discovered natural antibiotic -- produced by bacteria from the lung infection in a cystic fibrosis patient -- could help fight these infections. Lab testing reported in the Journal of the American Chemical Society shows that the compound is active against multi-drug resistant strains.

Starting with the famous first discovery of penicillin from mold, scientists have continued to search for natural sources of antibiotics. And as pathogens develop resistance to once-reliable medicines, the search has taken on a new urgency. By 2040, more than a third of all TB cases in Russia, for example, could show resistance to first-line drugs currently used to fight the disease, a recent report published in Lancet estimates. Among potential new drug sources are species of the bacterial genus Burkholderia that thrive in a wide range of habitats, from soil to the human lung. One way these microbes have adapted to these diverse environments is by making potent antibiotics to take out their competition. In light of the growing threat of drug-resistant bacteria, particularly among TB strains, Gregory L. Challis, Eshwar Mahenthiralingam and colleagues wanted to see if Burkholderia might produce a promising anti-TB compound.

The researchers discovered that one species, Burkholderia gladioli, which was isolated from the sputum of a child with cystic fibrosis, produces an antibiotic called gladiolin. The compound belongs to the same structural class as etnangien, another antibiotic that has been investigated for its ability to jam bacterial cell machinery. But etnangien is highly unstable. The researchers found that gladiolin is much more stable than etnangien, and could therefore potentially be a better drug candidate. Lab testing also showed that gladiolin blocked the growth of four drug-resistant TB strains.
-end-
The authors acknowledge funding from the Biotechnology and Biological Sciences Research Council (U.K.), the Wales Life Sciences Bridging Fund and a Marie Sklodowska-Curie Actions Fellowship.

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us on Twitter | Facebook

American Chemical Society

Related Bacteria Articles:

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
More Bacteria News and Bacteria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab