Nav: Home

Massey scientists may have found a new way to halt lung cancer growth

June 14, 2017

The gene p53 functions normally as a cancer suppressor, but mutated versions of the gene have been implicated in the development and growth of nearly half of all human cancers. Now, for the first time, scientists at VCU Massey Cancer Center have uncovered a mechanism that makes lung cancer cells dependent on mutated versions of the gene, opening the potential for new, more effective treatments.

Each year, lung cancer kills more people than colon, breast and prostate cancers combined. The American Cancer Society estimates there will be more than 220,000 new cases of lung cancer in the U.S. in 2017, further underscoring the need for new, more effective therapies.

Swati Palit Deb, Ph.D., a member of the Cancer Molecular Genetics research program at Massey and an associate professor in the Department of Biochemistry and Molecular Biology at the VCU School of Medicine, led a team of scientists to reveal a strategy to prevent the growth of lung cancer in cultured cell lines as well as mouse models by blocking the function of a surveillance protein, known as ChK1, needed to increase the success of genome duplication. Deb's findings were recently published in the Journal of Clinical Investigation.

"Some mutated versions of p53, known as gain of function mutations, not only loose tumor suppressor functions, but also gain oncogenic functions. This is the first time that anyone has shown a mechanism by which cancer cells depend on gain of function mutations of the p53 gene for survival and growth," says Deb. "With this knowledge, we may be able to develop new therapies that kill lung cancer cells with gain of function p53 mutations while sparing healthy tissue."

At the heart of the researchers' discoveries is the process of genome duplication during cell growth. All cells progress through a cycle that leads to DNA replication and cellular division, and each phase of that cycle is responsible for preparing for and completing genome duplication and cell division that results in two new copies of the cell.

By studying the cancer cells' genomes--the genetic material inside of cells--the researchers showed that mutated p53 genes produce excess ChK1 and cyclin A proteins. These proteins help regulate progression through the cell cycle, and ChK1, in particular, helps prevent the collapse of what are known as replication forks. Before cell division, our genome must start replication from predestined sites, known as replication origins, to make a copy of itself for the daughter cells. The newly replicated DNA proceeds along the parent genome generating "replication forks," and several surveillance proteins, such as ChK1, prevent the newly formed forks from collapsing before DNA replication is completed. When replication forks collapse, cell division cannot be completed and the cell dies.

"Inhibitors of ChK1 have been used to prevent cancer cell growth in experiments and have progressed to clinical trials with limited success," says Deb. "The new information from our studies is that the ChK1 inhibitors should specifically be effective in stopping cancer cell multiplication in patients with gain of function p53 mutations. Thus, we feel ChK1 inhibitors have not been used to right group of cancer patients."

"We plan to develop strategies that utilize these findings to block the spread of lung cancers with mutated p53," says Deb. "And because p53 is mutated in a majority of other cancers, our findings could help inform the development of new treatments for many different cancer types."
-end-
Deb collaborated on this study with Steven R. Grossman, M.D., Ph.D., Dianne Nunnally Hoppes Endowed Chair in Cancer Research, deputy director and co-leader of the Developmental Therapeutics research program at VCU Massey Cancer Center and professor and chair of the Division of Hematology, Oncology and Palliative Care at the VCU School of Medicine; Sumitra Deb, Ph.D., member of the Cancer Molecular Genetics research program at Massey and professor in the Department of Biochemistry and Molecular Biology at the VCU School of Medicine; Shilpa Singh, a graduate student of Integrative Live Sciences and Catherine Vaughan, postdoctoral researcher both from the Department of Biochemistry and Molecular Biology at the VCU School of Medicine; and Rebecca A. Frum, Ph.D., postdoctoral researcher in the Department of Internal Medicine at the VCU School of Medicine.

This study was supported by National Cancer Institute (NCI) grant R01-CA107532; a VCU Massey Cancer Center Pilot Project grant; VCU Presidential Quest funding; VCU Integrative Life Sciences, who supported Singh; and, in part, by VCU Massey Cancer Center's NCI Cancer Center Support Grant P30CA016059.

The full manuscript of this study is available at: https://www.jci.org/articles/view/87724.

Virginia Commonwealth University

Related Lung Cancer Articles:

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Lung transplant patients face elevated lung cancer risk
In an American Journal of Transplantation study, lung cancer risk was increased after lung transplantation, especially in the native (non-transplanted) lung of single lung transplant recipients.
Proposed cancer treatment may boost lung cancer stem cells, study warns
Epigenetic therapies -- targeting enzymes that alter what genes are turned on or off in a cell -- are of growing interest in the cancer field as a way of making a cancer less aggressive or less malignant.
Are you at risk for lung cancer?
This question isn't only for people who've smoked a lot.
Better equipped in the fight against lung cancer
Lung cancer is the third most common type of cancer in Germany and the disease affects both men and women.
New liquid biopsy-based cancer model reveals data on deadly lung cancer
Small cell lung cancer (SCLC) accounts for 14 percent of all lung cancers and is often rapidly resistant to chemotherapy resulting in poor clinical outcomes.
Cancer drug leads to 'drastic decrease' in HIV infection in lung cancer patient
Doctors in France have found the first evidence that a cancer drug may be able to eradicate HIV-infected cells in humans.
Air pollution is associated with cancer mortality beyond lung cancer
A large scale epidemiological study associates some air pollutants with kidney, bladder and colorectal cancer death.
Free lung-cancer screening in the Augusta area finds more than double the cancer rate of previous screenings
The first year of free lung cancer screening in the Augusta, Ga., area found more than double the rate seen in a previous large, national study as well as a Massachusetts-based screening for this No.
Lung cancer may go undetected in kidney cancer patients
Could lung cancer be hiding in kidney cancer patients? Researchers with the Harold C.
More Lung Cancer News and Lung Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.