Nav: Home

Anti-malaria drugs: Potential new target identified

June 14, 2017

University Park, PA -- A newly described protein could be an effective target for combatting drug-resistant malaria parasites. The protein, the transcription factor PfAP2-I, regulates a number of genes involved with the parasite's invasion of red blood cells, a critical part of the parasite's complex life cycle that could be targeted by new antimalarial drugs. A paper describing the protein PfAP2-I and its role in the invasion process appears June 14, 2017 in the journal Cell Host & Microbe.

"The reality is that there are resistant parasites to every known antimalarial drug," said Manuel Llinás, professor of biochemistry and molecular biology at Penn State University and lead author of the paper. "We need new drugs targeting different aspects of parasite biology."

Nearly half of the world's population lives in areas at risk of transmitting malaria, a serious and sometimes fatal disease that produces symptoms such as fevers, chills, and flu-like illness. According to the World Health Organization, over 212 million cases of malaria were reported in 2015, with an estimated 429,000 deaths, the majority of which occur in young children in sub-Saharan Africa.

Malaria is caused by Plasmodium parasites, which have a complex 3-stage life cycle. After a parasite-carrying mosquito bites a person, the parasite infects liver cells, where it grows and multiplies. The parasites then invade red blood cells, where they multiply further, releasing daughter parasites, or merozoites, that in turn must invade new red blood cells. Symptoms of malaria are expressed during this cyclical 48-hour red blood cell life-stage.

"Quite simply, if you prevent the parasite from invading red blood cells, you prevent any disease," says Llinás. "We want to understand how this invasion process is regulated at the genetic level. One of the unique features about Plasmodium is that it has very few transcription factors -- proteins that bind to specific DNA sequences to direct which genes should be turned on and when. Most multi-celled organisms have hundreds of these regulators, but it turns out, so far as we can recognize, the parasite has a single family of transcription factors called Apicomplexan AP2 proteins. One of these transcription factors is PfAP2-I."

PfAP2-I is the first known regulator of invasion genes in Plasmodium falciparum -- the species that causes the deadliest form of malaria. In total, PfAP2-I specifically regulates over 150 genes, eighteen percent of which are known to be involved in the red blood cell invasion process. The new study also indicates that PfAP2-I likely recruits another protein, Bromodomain Protein 1 (PfBDP1), which was previously shown to be involved in the invasion of red blood cells. The two proteins may work together to regulate gene transcription during this critical stage of infection.

"Red blood cell invasion has been seriously considered for a long time as a candidate for antimalarial vaccines," says Llinás. "Many proteins that are found on the surface of the merozoite -- proteins that help the parasite bind to and pull itself inside of a new red blood cell -- have been targeted with vaccines, but they've all failed. Why? The surface proteins are very redundant, so unless you interfere with all of them, you can't block invasion. But disrupting PfAP2-I would prevent the invasion program from ever getting turned on in the first place."

Instead of targeting the merozoite surface proteins with a vaccine, a new drug could focus solely on inhibiting PfAP2-I. Preventing PfAP2-I from binding to DNA and initiating the expression of invasion genes, or preventing PfAP2-I from recruiting other important proteins like PfBDP1, would stop an infection before it even reaches the red blood cell stage. Because PfAP2-I does not have parallels in humans, a drug targeting this transcription factor may have the added benefit of specificity, making it safer with fewer potential side-effects in humans.

"Now that we know how the invasion process is regulated," says Llinás, "we have a completely new angle for targeting the parasite through pharmacological intervention."
-end-
In addition to Llinás, the research team includes Joana Santos, Gabrielle Josling, Philipp Ross, and Lindsey Orchard, postdoctoral researchers and research assistants at Penn State at the time of the research, and Preeti Joshi, Tracey Campbell, Ariel Schieler, and Ileana Cristea at Princeton University.

The research was funded by the U.S. National Institutes of Health, the Arnold and Mabel Beckman Foundation, and the Princeton Center for Quantitative Biology. Additional support was provided by the Swiss National Science Foundation, EMBO, the Natural Sciences and Engineering Research Council of Canada, the New Jersey Commission on Cancer Research, the American Heart Association, and the Huck Institutes of the Life Sciences.

CONTACTS:

Manuel Llinás
manuel@psu.edu
1-814-867-3444

Barbara K. Kennedy (PIO)
bkk1@psu.edu
1-814-863-4682

IMAGE LINK (for download): https://psu.box.com/v/Llinas6-2017

IMAGE CAPTION AND CREDIT:

A colorized electron micrograph of a malaria-causing Plasmodium parasite (right) attaching to and invading a human red blood cell. The inset shows the attachment point at higher magnification. Credit: National Institute of Allergy and Infectious Diseases, NIH

Penn State

Related Malaria Articles:

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the Umeå University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.
Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.
New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.
Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.
Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.
Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.
Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.
Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.
The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.
Free malaria tests coupled with diagnosis-dependent vouchers for over-the-counter malaria treatment
Coupling free diagnostic tests for malaria with discounts on artemisinin combination therapy (ACT) when malaria is diagnosed can improve the rational use of ACTs and boost testing rates, according to a cluster-randomized trial published this week in PLOS Medicine by Wendy Prudhomme O'Meara of Duke University, USA, and colleagues.
More Malaria News and Malaria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.