Nav: Home

Bioengineered human livers mimic natural development

June 14, 2017

CINCINNATI - An international team of researchers bioengineering human liver tissues uncovered previously unknown networks of genetic-molecular crosstalk that control the organ's developmental processes - greatly advancing efforts to generate healthy and usable human liver tissue from human pluripotent stem cells.

The scientists report online in Nature on June 14 that their bioengineered human liver tissues still need additional rounds of molecular fine tuning before they can be tested in clinical trials.

The research was led by Takanori Takebe, MD, a physician/investigator at Cincinnati Children's Hospital Medical Center (Division of Gastroenterology, Hepatology & Nutrition) in the United States, and Barbara Treutlein, PhD, Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany.

The only current treatment for end-stage liver disease is a liver transplant, and the number of livers available from deceased donors is limited. Because of this, a major goal in regenerative medicine is to attain self-organizing human tissues - in which cells experience a series of coordinated molecular events precisely timed and spaced to form functioning three dimensional liver buds, the authors write.

Nailing down the precise details and context of developmental molecular-cellular crosstalk in the endoderm of an embryo - where livers form - is critical to this technology's therapeutic potential.

"The ability to bioengineer transplantable livers and liver tissues would be a great benefit to people suffering from liver diseases who need innovative treatments to save their lives," said Takebe at Cincinnati Children's. "Our data give us a new, detailed understanding of the intercellular communication between developing liver cells, and shows we can produce human liver buds that come remarkably close to recapitulating fetal cells from natural human development."

Genetic Blueprint

In the current study, the authors used single-cell RNA sequencing (RNA-Seq) to monitor how individual cells change when they are combined in a three-dimensional (3D) microenvironment. This is where vascular cells, connective tissue cells and hepatic cells engage in a complex communication.

The main advantage of using single-cell RNA-Seq technology is it provides a blueprint of gene activity in each and every cell type. The researchers zeroed in on developing a complete blueprint of active transcription factors (genes that tell other genes what to do) and the signaling molecules and receptors in each of the different cells before and after they come together to form liver tissue.

Authors report they observed a dramatic change in the genetic-molecular conversations and how the cells behave when they all develop together in a 3D microenvironment.

Single-cell RNA-Seq analysis also helped researchers benchmark the engineered 3D liver tissues generated from stem cells against naturally occurring human fetal and adult liver cells. Researchers observed that the lab-grown liver buds have molecular and genetic signature profiles that very closely resemble those found in naturally developing human liver cells.

In particular they highlight molecular crosstalk between a signaling protein that cells produce to stimulate formation of blood vessels (VEGF) and a protein and receptor that communicates with VEGF to help trigger formation of a blood supply to the developing liver (KDR). The current study shows the communication between VEGF and KDR is critical to instructing the development and maturation of liver tissues.

Researchers indicate they observed this crosstalk during development of mouse liver cells, natural human liver cells and in their bioengineered livers.

"Our data reveals, in exquisite resolution, that the conversation between cells of different types changes the cells in a way that likely mimics what is going on during human development," said Treutlein at Max Planck. "There is still a lot left to learn about how to best generate a functioning human liver tissue in a dish, nevertheless, this a big step in that direction."

Natural vs. Bioengineered

The authors noticed the gene expression landscape in the generated liver buds - such as precisely where and when genes express themselves - did not completely match natural human liver cells. The remaining gaps between natural and bioengineered tissues may come from different developmental cues caused by the unique microenvironment of cells developing in a petri dish versus that of cells developing in a person or animal.

The new cellular and molecular data uncovered in the current study will be "exploited in the future to further improve liver bud organoids" and "precisely recapitulate differentiation of all cell types" in fetal human development, the authors write.
-end-
Co-first authors on the study are J. Gray Camp, PhD, Max Planck Institute for Evolutionary Anthropology, and Keisuke Sekine, PhD, at Yokohama City University.

Funding support for the research came from: the Max Planck Society; PRESTO Japan Science and Technology Agency; the Ministry of Education Culture and Sports of Japan (#15H04922 and #15KK0314); and the AMED Research Center Network for Realization of Regenerative Medicine (Japan Agency for Medical Research and Development). Takebe also is a New York Stem Cell Foundation - Robertson Investigator and receives grant support from the organization.

Cincinnati Children's Hospital Medical Center

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...