Nav: Home

Drug design strategy boosts the odds against resistance development

June 14, 2017

A new rational drug design technique that uses a powerful computer algorithm to identify molecules that target different receptor sites on key cellular proteins could provide a new weapon in the battle against antibiotic resistance, potentially tipping the odds against the bugs.

The technique, which has been validated against a drug-resistant bacterial strain, identifies compounds that target two or more receptor sites on proteins that inhibit a key cellular function. To obtain resistance to drug compounds developed with the technique, the microbes would have to simultaneously develop mutations in all the receptor pockets targeted by the drug - a challenge much more significant than developing resistance in a single receptor site.

Researchers from the Georgia Institute of Technology and Harvard University believe the technique could provide a new general approach for battling drug resistance that may potentially also be applied to cancer cells and viruses which also develop drug resistance. The research, supported by the National Institutes of Health, was reported May 19 in the journal ACS Chemical Biology.

"We have developed an entirely novel mechanism for increasing antibiotic effectiveness," said Jeffrey Skolnick, director of Georgia Tech's Center for the Study of Systems Biology. "The problem of emerging antibiotic resistance is a major health care crisis, and we think this approach could allow the rapid design of new classes of molecules that would be able to maintain their effectiveness longer, allowing us to stay one step ahead of the bugs."

Antibiotic resistance often develops when proteins - often enzymes - mutate the receptor pockets that allow the drugs to bind to the protein. Bacterial populations often include individuals that have these mutations randomly, and when antibiotics kill off the susceptible cells, the population of those with the specific mutation grows. In order to control these resistant bacteria, doctors must employ a drug compound that targets a different receptor or different binding site on a key bacterial protein.

The technique identified three classes of inhibitor drugs that targeted both primary and secondary receptor pockets on the dihydrofolate reductase (DHFR) enzyme in a drug-resistant strain of Escherichia coli (E. coli). DHFR is necessary for the synthesis of important cellular building blocks, and is a classical target for antibiotics. Without production of these compounds, bacteria cannot reproduce.

Using their algorithm, Skolnick and his Georgia Tech collaborators identified 10 potentially useful drug compounds and prioritized compounds from the three categories - stilbenoid, deoxybenzoin and chalcone family of compounds - for their ability to target a secondary receptor pocket. Interestingly, one of the molecules was resveratrol which is found in red wine and which has been reported to have anti-aging and anti-cancer effects. In the laboratory, the researchers confirmed that the commercially available compounds could indeed bind with DHFR.

But the real test was whether the compounds would work on living bacteria. To evaluate that, the Georgia Tech researchers worked with Eugene Shakhnovich, a professor in the Department of Chemistry and Chemical Biology at Harvard University. Shakhnovich and his colleagues confirmed that the drug compounds shut down the production of folates in the drug-resistant E. coli, dramatically slowing the growth of the bacterium. They also showed that the addition of folates to the bacterial population allowed the bugs to survive despite treatment by the DHFR-inhibiting drugs.

"We tested the compounds in vitro with purified variants of the enzyme," Shakhnovich said. "We engineered E. coli strains that carry escape mutations in the folA locus - which encodes DHFR - on their chromosomes and proved that the newly-found compounds effectively inhibit growth in both wild-type and escape mutant strains of DHFR, albeit at high concentrations."

Because it is a relatively small protein with well-defined biophysical properties, DHFR "represents a desirable model to explore the genotype-phenotype relationship between biophysical properties of the enzyme and the fitness and evolution of a microorganism," Shakhnovich added.

As a next step, Skolnick would like to test the principle on other proteins essential to other microorganisms to see if two or more binding pockets can be targeted. That could require development of new therapeutic molecules able to attack the microbial targets. Ultimately, the technique could be used to shut down other avenues of antibiotic resistance, including the ability of cells to break down drugs or eject them before they can bind.

If the technique proves successful in other laboratory studies, testing with an animal model would be necessary to determine whether it can be beneficial in living organisms.

DHFR has been targeted for anti-cancer drugs, and Skolnick is hopeful that the two-receptor technique may prove useful in developing new chemotherapy agents that could fight off the resistance that often renders them useless.

Skolnick believes the approach may help scientists stay ahead of bacterial resistance by providing a technique to rapidly develop new drugs. The compounds would be used in combination therapies to further guard against development of resistance.

"We are always going to be at war with microbes," he said. "The bacterial system is going to evolve to respond to new antibiotics, so we have to keep targeting something else so the system never gets to evolve resistance. It's likely that we'll need to use combination therapies that use multiple drugs to eliminate the development of resistance."
-end-
This project was funded by 1R35GM118039 and 1RO1068670 (to Shakhnovich) of the Division of General Medical Sciences of the NIH. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

CITATION: Bharath Srinivasan, Joa?o V. Rodrigues, Sam Tonddast-Navaei, Eugene Shakhnovich, and Jeffrey Skolnick, "Rational Design of Novel Allosteric Dihydrofolate Reductase Inhibitors Showing Antibacterial Effects on Drug-Resistant Escherichia coli Escape Variants," (ACS Chemical Biology, 2017) http://dx.doi.org/10.1021/acschembio.7b00175

Georgia Institute of Technology

Related Antibiotic Resistance Articles:

Cause of antibiotic resistance identified
Bacteria can change form in human body, hiding the cell wall inside themselves to avoid detection.
The solution to antibiotic resistance could be in your kitchen sponge
Researchers from the New York Institute of Technology (NYIT) have discovered bacteriophages, viruses that infect bacteria, living in their kitchen sponges.
Antibiotic resistance in spore-forming probiotic bacteria
New research has found that six probiotic Bacillus strains are resistant to several antibiotics.
How bacteria acquire antibiotic resistance in the presence of antibiotics
A new study's disconcerting findings reveal how antibiotic resistance is able to spread between bacteria cells despite the presence of antibiotics that should prevent them from growing.
Five rules to tackle antibiotic resistance
Current efforts to tackle antibiotic resistance are 'not nearly radical enough,' a leading scientist says.
Breaking open the gates of antibiotic resistance
Creating a defect in tRNA molecules could weaken bacteria's two-pronged defense and help make faster-acting antibiotics
Wastewater reveals the levels of antibiotic resistance in a region
A comparison of seven European countries shows that the amount of antibiotic resistance genes in wastewater reflects the prevalence of clinical antibiotic resistance in the region.
Bacteria 'trap' could help slow down antibiotic resistance
Scientists have developed a new and faster test for identifying how single bacteria react to antibiotics, which could help in the fight against antimicrobial resistance.
New strategy may curtail spread of antibiotic resistance
In studying a bacterium that causes disease in hospitalized people, researchers at Washington University School of Medicine in St.
Antibiotic resistance in the environment linked to fecal pollution
A study shows that 'crAssphage', a virus specific to bacteria in human feces, is highly correlated to the abundance of antibiotic resistance genes in environmental samples.
More Antibiotic Resistance News and Antibiotic Resistance Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.