More amyloid in the brain, more cognitive decline

June 14, 2017

A new study from the Center for Vital Longevity at The University of Texas at Dallas has found that the amount of amyloid plaques in a person's brain predicts the rate at which his or her cognition will decline in the next four years.

The study, published in JAMA Neurology, used positron emission tomography (PET) scans to detect amyloid in 184 healthy middle-age and older adults participating in the Dallas Lifespan Brain Study. Amyloid plaques, a sticky buildup that gradually gathers outside of neurons and is a hallmark of Alzheimer's disease, are believed to start accumulating in the brain 10 to 20 years before the onset of dementia.

"We think it is critical to examine middle-age adults to detect the earliest possible signs of Alzheimer's disease, because it is becoming increasingly clear that early intervention is the key to successful prevention of Alzheimer's disease," said Michelle Farrell, a PhD student at the center and the lead author of the study.

The study presents some of the first data on amyloid and its cognitive consequences in adults ages 40 to 59. For these middle-age adults, the study found that higher amyloid amounts were associated with declines in vocabulary, an area of cognition that is generally preserved as people age.

The results suggest that a new approach might be needed to provide physicians and patients with information about the future for someone with amyloid deposits. Amyloid PET scan results are typically presented as either positive or negative, but the new findings suggest that the amount of amyloid in the brain provides useful prognostic information about how rapidly cognition may decline in the future.

"Our understanding of the earliest and silent phase of possible Alzheimer's disease is increasing rapidly. Providing physicians and patients with more information about the magnitude of amyloid deposits will provide valuable information that will permit better planning for the future," said Dr. Denise Park, director of research at the Center for Vital Longevity, Distinguished University Chair in Behavioral and Brain Sciences and senior author of the study.

Park heads up the Dallas Lifespan Brain Study, which is a multi-year research project aimed at understanding what a healthy brain looks like and how it functions at every decade of life from age 20 through 90. Each of the nearly 500 volunteers in the study undergo tests every four years.

While most studies of amyloid and its relationship to Alzheimer's disease have focused on older adults over age 60, the Dallas Lifespan Brain Study also studies middle-age adults to find the earliest possible signs of Alzheimer's disease.

In the JAMA Neurology research, the three middle-age adults who had the highest amyloid amounts and greatest vocabulary decline were also found to have a double dose of the ApoE-4 gene implicated in Alzheimer's. This means they received a copy of the gene from each of their parents. Only about 4 percent of the population carries this genetic combination, and the finding hints at the possibility that subtle symptoms of cognitive decline related to amyloid may be detectable as early as middle age in this vulnerable population.
-end-
The study was funded by the National Institute on Aging, and additional support was provided by Avid Radiopharmaceuticals, a subsidiary of Eli Lilly, which developed florbetapir, a radiotracer that, along with PET imaging, measured amyloid deposits.

University of Texas at Dallas

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.