Nav: Home

Amazonia's future will be jeopardized by dams

June 14, 2017

Building the hundreds of hydroelectric dams proposed for the Amazon River Basin will cause massive environmental damage all the way from the eastern slopes of the Andes to the Atlantic Ocean, according to new findings by an international team of researchers that includes a University of Arizona hydrologist.

The Amazon River and its watershed--the largest river system on Earth--cover 6.1 million square kilometers (2.4 million square miles) and includes nine countries.

"The Amazon is the most important river basin on the planet. It's a microcosm of our issues of today involving environment, energy and health of the planet," said co-author Victor Baker, University of Arizona Regents' Professor of Hydrology and Atmospheric Sciences.

The 428 current and proposed dams will have environmental impacts throughout the entire system, the team reports in the June 15 issue of the journal Nature. About one-third of the 428 dams are built or are under construction.

While these hydroelectric dams have been justified for providing renewable energy and avoiding carbon emissions, little attention has been paid to the major disturbances dams present to the Amazon floodplains, rainforests, the northeast coast of South America and the regional climate, the researchers write.

Generally, only the local environmental impact of a dam is considered, not the regional or system-wide effect.

"The river and its individual pieces cannot be separated out," Baker said. "That an individual dam assessment can be separated from the rest of the system isn't scientifically valid."

The research team conducted a large-scale assessment of how the current and future dams will affect the entire Amazon Basin. The researchers developed a Dam Environmental Vulnerability Index to quantify their assessment. The DEVI ranges from one to 100, with 100 being the most vulnerable.

The DEVI incorporates overall changes to the river systems from dams, including the potential land use changes, erosion, runoff, changes in sediment deposition, the effects on the region's rich biodiversity and impacts to the regional food supply.

The researchers found the watershed of the Madeira River, the largest Amazon tributary, will sustain the greatest negative impacts from the current and future dams. The team assigned that region a DEVI above 80.

Lead author Edgardo Latrubesse, a geography and the environment professor at the University of Texas at Austin, said, "The impacts can be not only regional, but also on an interhemispheric scale. If all the planned dams in the basin are constructed, their cumulative effect will trigger a change in sediment flowing into the Atlantic Ocean that may hinder the regional climate."

The paper by Latrubesse, Baker and their 14 colleagues is titled, "Damming the Rivers of the Amazon Basin." A complete list of authors and their affiliations is at the bottom of this news release.

The National Science Foundation, NASA, the National Geographic Society, LLILAS-Mellon, the Brazilian Council for Scientific and Technological Development-CNPq and CAPES Foundation funded the research.

Rivers in the Amazon Basin move like a dance, exchanging sediments across continental distances to deliver nutrients to a mosaic of wetlands, Latrubesse said.

Sediment transported by rivers provides nutrients that sustain wildlife, contribute to the regional food supplies and modulate river dynamics that result in high habitat and biotic diversity for both aquatic and nonaquatic organisms.

Many current and proposed dams are located far upstream in the Andean region. Research indicates the Andes provide more than 90 percent of the sediment to the entire Amazon Basin. Dams trap the nutrient-rich sediment and prevent it from moving downstream.

The Madeira River is home to the most diverse fish population in the Amazon. Since the huge Santo Antônio and Jiaru dams were constructed on the Madeira, the river's average sediment concentration decreased by 20 percent. Researchers expect the 25 dams planned for further upstream will trap additional nutrient-rich sediment behind them.

The largest preserved mangrove region of South America is along the coastline of northeast Brazil and the three Guianas and needs sediment from the Amazon, Latrubesse said.

Baker added that the cumulative impacts from the dams affect rainfall and storm patterns from the Amazon Basin to the Gulf of Mexico. In addition to changes in sediment flow, those impacts include the storage of water behind the dams, the water flows and the timing of flows to the mouth of the river.

The study's authors conclude, "Citizens of the Amazon Basin countries will ultimately have to decide whether hydropower generation is worth the price of causing profound damage to the most diverse and productive river system in the world. If those decisions are made within the context of a comprehensive understanding of the fluvial system as a whole, the many benefits the rivers provide to humans and the environment could be retained."
-end-
Researcher contact:

Victor Baker
University of Arizona
baker@email.arizona.edu

Media contact:

Mari N. Jensen
University of Arizona
+1-520-626-9635
mnjensen@email.arizona.edu

Rachel Griess
University of Texas at Austin
+1-512-471-2689
rachelgriess@austin.utexas.edu

The authors of the paper, "Damming the rivers of the Amazon Basin," are:

Edgardo M. Latrubesse of the University of Texas at Austin and Nanyang Technological University, Singapore; Eugenio Y. Arima of the University of Texas at Austin; Thomas Dunne of the University of California at Santa Barbara; Edward Park of the University of Texas at Austin; Victor R. Baker of the University of Arizona, Tucson; Fernando M. d'Horta of the National Institute of Amazonian Research (INPA), Manaus, Brazil; Charles Wight of the University of Texas at Austin; Florian Wittmann of the Karlsruhe Institute of Technology, Rastatt, Germany and Duke University, Durham, North Carolina; Jansen Zuanon of the National Institute of Amazonian Research (INPA), Manaus, Brazil; Paul A. Baker of Duke University, Durham, North Carolina and Yachay Tech, Urcuquí, Ecuador; Camila C. Ribas of the National Institute of Amazonian Research (INPA), Manaus, Brazil; Richard B. Norgaard of the University of California at Berkeley; Naziano Filizola of the Federal University of Amazonas, Manaus, Brazil; Atif Ansar and Bent Flyvbjerg of the University of Oxford, UK; and Jose C. Stevaux of the State University of Sao Paulo (UNESP-Rio Claro), Rio Claro, Brazil.

University of Arizona

Related Amazon Basin Articles:

Human activities worsen air quality in Dunhuang, a desert basin in China
Due to the increasing contribution of human activities, air quality has become worse in the most recent decade over the Dunhuang area, and the main reason is a shift to a mixture of coarse and fine particles, having previously been due to dust aerosol alone.
Amazon basin deforestation could disrupt distant rainforest by remote climate connection
The ongoing deforestation around the fringes of the Amazon may have serious consequences for the untouched deeper parts of the rainforest.
First long-term study of Murray-Darling Basin wetlands reveals severe impact of dams
A landmark 30-year-long UNSW Sydney study of wetlands in eastern Australia has found that construction of dams and diversion of water from the Murray-Darling Basin have led to a more than 70 percent decline in waterbird numbers.
Falkland Islands basin shows signs of being among world's largest craters
A basin in the Falkland Islands exhibits traits of a large impact crater, according to a new analysis by a team of scientists.
Climatic effect of irrigation over the Yellow River basin
The agricultural irrigation affects the regional climate mainly through changing the surface water process.
NASA measures 'dust on snow' to help manage Colorado River Basin water supplies
By working together to use satellite data, NASA and the Colorado Basin River Forecast Center ensure that more than 33 million people have a more secure water supply and don't have to worry about consulting a forecast before turning on the faucet.
A slushy ocean may lie beneath Pluto's heart-shaped basin
Beneath Pluto's 'heart' lies a cold, slushy ocean of water ice, according to data from NASA's New Horizons mission.
Climate change means major ecosystem shifts for the Mediterranean Basin
Global warming above 1.5°C, the ideal limit set by the 2015 Paris Agreement, will change the Mediterranean region, producing ecosystems never seen throughout the last 10,000 years, a new study reports.
NASA sees Lester move into central Pacific Ocean basin
Hurricane Lester continues to march to the west and NASA-NOAA's Suomi NPP satellite saw the storm as it was crossing from the Eastern Pacific to the Central Pacific Ocean and triggered new hurricane watches for Hawaii.
Asteroid that formed moon's Imbrium Basin may have been protoplanet-sized
The asteroid that slammed into the moon 3.8 billion years ago creating the Imbrium Basin may have had a diameter of at least 150 miles, according to a new estimate published in Nature.

Related Amazon Basin Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...