Nav: Home

Temperature changes make it easier for malaria to climb the Ethiopian highlands

June 14, 2017

The highlands of Ethiopia are home to the majority of the country's population, the cooler climate serving as a natural buffer against malaria transmission. New data now show that increasing temperatures over the past 35 years are eroding this buffer, allowing conditions more favourable for malaria to begin climbing into highland areas.

That is the conclusion of a new study by researchers from the University of Maine and the International Research Institute for Climate and Society at Columbia University in New York.

Malaria is a climate sensitive disease, and while the biology of malaria transmission is complex, sufficiently low air temperatures inhibit the development of the malaria parasites that cause the disease.

Dr. Bradfield Lyon, a research professor at the University of Maine and lead author on the study, indicates "Air temperatures below approximately 18°C and 15°C, respectively, effectively stop the development of the Plasmodium falciparum and P. vivax parasites responsible for the majority of malaria cases in Ethiopia." Low temperatures also impede the development rates and population density of the Anopheles mosquito, which transmits the disease.

"While locations of sufficiently high elevation have temperatures below these thresholds, our research examined how these "threshold elevations" have been changing with time across the highlands."

The study, published today in the journal Environmental Research Letters, utilized a newly developed national temperature dataset for Ethiopia, which combines hundreds of surface station observations with climate model output that incorporates satellite data and other information. The new dataset provides a detailed view of maximum and minimum temperatures across Ethiopia going back to 1981.

The study identified statistically significant increases in elevation for both the 18°C and 15°C thresholds in highland areas between 1981 and 2014. "The elevation at which the temperature thresholds are met has risen by more than 100 meters since 1981. While a 100 meter increase may appear modest, we estimate that more than six million people currently live in areas with statistically significant increases in threshold temperature."

The researchers point out that exceeding the minimum temperature thresholds necessary for malaria transmission does not in itself point to an increase in the prevalence of malaria.

"While the dynamics of malaria transmission are complicated and control efforts may significantly limit the impact of these temperature changes, our study shows a clear softening of the climate barrier to transmission in the Ethiopian highlands, potentially putting more people at risk," said study co-author Dr. Madeleine Thomson, a senior research scientist at the International Research Institute for Climate and Society.

"Until quite recently, undertaking this type of study was not possible owing to a lack of quality controlled and sufficiently high spatial resolution climate data," said Lyon. "These new data allow us to examine the climate of the highlands in much more detail and confirm some of the anticipated changes of a warming Earth."
-end-


IOP Publishing

Related Malaria Articles:

Could there be a 'social vaccine' for malaria?
Malaria is a global killer and a world health concern.
Transgenic plants against malaria
Scientists have discovered a gene that allows to double the production of artemisinin in the Artemisia annua plant.
Fighting malaria through metabolism
EPFL scientists have fully modeled the metabolism of the deadliest malaria parasite.
Should we commit to eradicate malaria worldwide?
Should we commit to eradicate malaria worldwide, asks a debate article published by The BMJ today?
Investigational malaria vaccine shows considerable protection in adults in malaria season
An investigational malaria vaccine given intravenously was well-tolerated and protected a significant proportion of healthy adults against infection with Plasmodium falciparum malaria -- the deadliest form of the disease -- for the duration of the malaria season, according to new findings published in the Feb.
Why malaria mosquitoes like people with malaria
Malaria mosquitoes prefer to feed -- and feed more -- on blood from people infected with malaria.
Malaria superbugs threaten global malaria control
A lineage of multidrug resistant P. falciparum malaria superbugs has widely spread and is now established in parts of Thailand, Laos and Cambodia, causing high treatment failure rates for the main falciparum malaria medicines, artemisinin combination therapies (ACTs), according to a study published today in The Lancet Infectious Diseases.
Considering cattle could help eliminate malaria in India
The goal of eliminating malaria in countries like India could be more achievable if mosquito-control efforts take into account the relationship between mosquitoes and cattle, according to an international team of researchers.
Seasonal malaria chemoprevention in Senegalese children lowers overall malaria burden
Giving preventive antimalarial drugs to children up to age 10 during active malaria season reduced the cases of malaria in that age group and lowered the malaria incidence in adults, according to a randomized trial carried out in Senegal and published in PLOS Medicine by researchers from the Université Cheikh Anta Diop, Senegal, the London School of Hygiene & Tropical Medicine, UK, and other collaborators.
How malaria fools our immune system
OIST researchers reconstruct the 3-D structure of a malaria protein in combination with human antibodies.

Related Malaria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".