Nav: Home

Blocking gene expression to combat deadly fungal infection

June 14, 2017

Each year, invasive fungal infections sicken an estimated 2 million people worldwide and kill nearly 800,000 - but a team of international scientists have discovered a new approach for antifungal drug treatments.

Researchers from USC and France identified that a gene-regulating protein, Bdf1, is critical for the survival of the pathogenic fungus, Candida albicans.

"We have shown that Bdf1 is an important new target for drug design," said Charles McKenna, a senior author of the study who is a professor of chemistry and pharmaceutical sciences in the USC Dornsife College of Letters, Arts and Sciences. "Our findings show that compounds that bind to this target will disrupt the growth of the fungus, opening the way to novel drug treatments for fungal disease."

The French scientists who led the study with McKenna were Jérôme Govin and Carlo Petosa, both at the University of Grenoble Alpes.

Rising health threat

The fungus, C. albicans, is an aggressive pathogen that in healthy individuals is normally held in check by the immune system. However, people with a weakened immune system, including patients who have cancer, HIV or autoimmune diseases, are susceptible to the infection, which can be life-threatening, McKenna said.

The team's findings, published on May 18 in the journal Nature Communications, may prove timely. Fungal infections such as candidiasis are increasingly resistant to drug treatments. Each year, an estimated 46,000 patients in the United States become infected with invasive candidiasis, according to the Centers for Disease Control and Prevention.

"When susceptible people develop candida infections, the fungus may enter the bloodstream. If treatment is unsuccessful, it has a very high mortality rate - in the 40 percent range," McKenna said. "We have a very limited number of drugs that are effective in treating such systemic infections. Unfortunately, like many other pathogens, C. albicans is increasingly resistant to the few available drugs, raising the stakes for patients, and fresh approaches are urgently needed."

Converging bioscience

McKenna noted that his team's discovery was made possible through convergent bioscience, an emerging fusion of multidisciplinary research to accelerate health-related discoveries from the bench to the bedside. By drawing from a diverse network of scientists, engineers and students, the USC Michelson Center for Convergent Bioscience program fosters biomedical discovery, innovation and real-world solutions to fast-track detection and cures for diseases ranging from microbial infections to Alzheimer's and cancer.

This fall, USC will open the hub for this new initiative, Michelson Hall - a 190,000 square-foot, high-tech research facility that is supported by a $50 million gift from retired spinal surgeon Gary K. Michelson and his wife, Alya Michelson. The facility will house the new USC Center for Drug Discovery with McKenna as its director.

Disrupting fungal gene expression

Many scientists are studying alternative approaches for possible treatments to diseases such as cancer by manipulating gene expression. The USC-Grenoble team is the first to prove that this approach is feasible to target fungal infections.

"The idea is that if you shut down this specific protein, Bdf1, you totally disrupt the whole process of gene expression and it becomes impossible for the fungus to grow," said Govin. "If you knock out the gene that makes the Bdf1 protein, then the fungus doesn't grow. Moreover, the fungus is no longer virulent when injected into mice."

The challenge for the scientists was finding a compound that shut down the Bdf1 protein without mistakenly affecting any similar proteins in humans.

"Using a technique called X-ray crystallography, we showed that the fungal Bdf1 protein and corresponding human proteins are very different at the atomic level," said Petosa. "This showed that compounds could specifically inhibit the fungal protein without affecting the human bromodomain proteins."

By screening a large library of chemical compounds at the California Institute for Biomedical Research, the researchers have already identified one compound in particular that selectively inhibits Bdf1. The finding holds great promise for future drug development.

"It shows that a whole new class of antifungal drugs is possible," said McKenna.
-end-
Other participants in the work were Boris Kashemirov, Elena Ferri and Yingsheng Zhou at USC; University of Grenoble Alpes researchers Flore Mietton, Morgane Champleboux, Ninon Zala, Marie Courçon and Didier Spittler; Danièle Maubon, Cécile Garnaud and Muriel Cornet from Grenoble University Hospital and the University of Grenoble Alpes; Murielle Chauvel and Christophe d'Enfert of Institut Pasteur (Paris, France); and Mitchell Hull and Mike Harbut of California Institute for Biomedical Research.

The work was supported by French grants, including from the Agence National de Recherche and French FACE foundation, and an estimated $454,000 from a National Institutes of Health grant to McKenna (IR21AI113704), which provided one third of the funds for the study.

University of Southern California

Related Immune System Articles:

The immune system may explain skepticism towards immigrants
There is a strong correlation between our fear of infection and our skepticism towards immigrants.
New insights on how pathogens escape the immune system
The bacterium Salmonella enterica causes gastroenteritis in humans and is one of the leading causes of food-borne infectious diseases.
Understanding how HIV evades the immune system
Monash University (Australia) and Cardiff University (UK) researchers have come a step further in understanding how the human immunodeficiency virus (HIV) evades the immune system.
Carbs during workouts help immune system recovery
Eating carbohydrates during intense exercise helps to minimise exercise-induced immune disturbances and can aid the body's recovery, QUT research has found.
A new model for activation of the immune system
By studying a large protein (the C1 protein) with X-rays and electron microscopy, researchers from Aarhus University in Denmark have established a new model for how an important part of the innate immune system is activated.
Guards of the human immune system unraveled
Dendritic cells represent an important component of the immune system: they recognize and engulf invaders, which subsequently triggers a pathogen-specific immune response.
How our immune system targets TB
Researchers have seen, for the very first time, how the human immune system recognizes tuberculosis (TB).
How a fungus inhibits the immune system of plants
A newly discovered protein from a fungus is able to suppress the innate immune system of plants.
A new view of the immune system
Pathogen epitopes are fragments of bacterial or viral proteins. Nearly a third of all existing human epitopes consist of two different fragments.
TB tricks the body's immune system to allow it to spread
Tuberculosis tricks the immune system into attacking the body's lung tissue so the bacteria are allowed to spread to other people, new research from the University of Southampton suggests.

Related Immune System Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...