Nav: Home

Quantum dot transistor simulates functions of neurons

June 14, 2017

A transistor that simulates some of the functions of neurons has been invented based on experiments and models developed by researchers at the Federal University of São Carlos (UFSCar) in São Paulo State, Brazil, Würzburg University in Germany, and the University of South Carolina in the United States.

The device, which has micrometric as well as nanometric parts, can see light, count, and store information in its own structure, dispensing with the need for a complementary memory unit.

It is described in the article "Nanoscale tipping bucket effect in a quantum dot transistor-based counter", published in the journal Nano Letters.

"In this article, we show that transistors based on quantum dots can perform complex operations directly in memory. This can lead to the development of new kinds of device and computer circuit in which memory units are combined with logical processing units, economizing space, time, and power consumption," said Victor Lopez Richard, a professor in UFSCar's Physics Department and one of the coordinators of the study.

The transistor was produced by a technique called epitaxial growth, which consists of coating a crystal substrate with thin film. On this microscopic substrate, nanoscopic droplets of indium arsenide act as quantum dots, confining electrons in quantized states. Memory functionality is derived from the dynamics of electrical charging and discharging of the quantum dots, creating current patterns with periodicities that are modulated by the voltage applied to the transistor's gates or the light absorbed by the quantum dots.

"The key feature of our device is its intrinsic memory stored as an electric charge inside the quantum dots," Richard said. "The challenge is to control the dynamics of these charges so that the transistor can manifest different states. Its functionality consists of the ability to count, memorize, and perform the simple arithmetic operations normally done by calculators, but using incomparably less space, time, and power."

According to Richard, the transistor is not likely to be used in quantum computing because this requires other quantum effects. However, it could lead to the development of a platform for use in equipment such as counters or calculators, with memory intrinsically linked to the transistor itself and all functions available in the same system at the nanometric scale, with no need for a separate space for storage.

"Moreover, you could say the transistor can see light because quantum dots are sensitive to photons," Richard said, "and just like electric voltage, the dynamics of the charging and discharging of quantum dots can be controlled via the absorption of photons, simulating synaptic responses and some functions of neurons."

Further research will be necessary before the transistor can be used as a technological resource. For now, it works only at extremely low temperatures - approximately 4 Kelvin, the temperature of liquid helium.

"Our goal is to make it functional at higher temperatures and even at room temperature. To do that, we'll have to find a way to separate the electronic spaces of the system sufficiently to prevent them from being affected by temperature. We need more refined control of synthesis and material growth techniques in order to fine-tune the charging and discharging channels. And the states stored in the quantum dots have to be quantized," Richard said.
-end-


Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Memory Articles:

Taking photos of experiences boosts visual memory, impairs auditory memory
A quick glance at any social media platform will tell you that people love taking photos of their experiences -- whether they're lying on the beach, touring a museum, or just waiting in line at the grocery store.
Think you know how to improve your memory? Think again
Research from Katherine Duncan at the University of Toronto suggests we may have to rethink how we improve memory.
Improving memory with magnets
The ability to remember sounds, and manipulate them in our minds, is incredibly important to our daily lives -- without it we would not be able to understand a sentence, or do simple arithmetic.
Who has the better memory -- men or women?
In the battle of the sexes, women have long claimed that they can remember things better and longer than men can.
New study of the memory through optogenetics
A collaboration between Universitat Autònoma de Barcelona and Harvard University pioneers the increase of memory using optogenetics in mice in Spain.
Peppermint tea can help improve your memory
Peppermint tea can improve long-term and working memory and in healthy adults.
A new glimpse into working memory
MIT study finds bursts of neural activity as the brain holds information in mind, overturns a long-held model.
Memory ensembles
For over forty years, neuro-scientists have been interested in the biological mechanisms underlying the storage of the information that our brain records every day.
What is your memory style?
Why is it that some people have richly detailed recollection of past experiences (episodic memory), while others tend to remember just the facts without details (semantic memory)?
Watching a memory form
Neuroscientists at Rosalind Franklin University of Medicine and Science have discovered a novel mechanism for memory formation.

Related Memory Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...