Nav: Home

Mainz scientists identify enzyme responsible for vascular damage caused by aircraft noise

June 14, 2018

In a recent study, scientists at the Department of Cardiology at the University Medical Center of Johannes Gutenberg University Mainz (JGU) have identified an enzyme responsible for aircraft-related vascular damage. The researchers were also able to show that night-time noise has a particularly harmful effect and thus demand that night-time sleep be protected from noise. With the current study, the scientists around Professor Thomas Münzel, Director of Cardiology I at the Department of Cardiology, and Professor Andreas Daiber, Head of Molecular Cardiology at the Department of Cardiology, consistently pursue the field of noise research and can announce another breakthrough. The new study is published in the European Heart Journal, the world's most renowned cardiology journal.

Aircraft noise leads to an increased development of cardiovascular diseases in the long term, as a series of precursor studies has now shown unequivocally. In 2013, the research group of Professor Thomas Münzel succeeded in demonstrating that simulated nocturnal noise increases the stress hormone epinephrine, reduces sleep quality, and damages the vascular system, called endothelial dysfunction. Further studies on a newly developed animal model showed last year that aircraft noise leads to a significant increase in stress hormones, a vascular dysfunction, increased oxidative stress, and inflammatory processes in the vessels as well as a marked change in the expression of genes in the vessel wall.

"With this new study, we can demonstrate for the first time that 'night-time noise', i.e., noise during the sleep phase of the mice, and not the noise during the waking phase is responsible for vascular dysfunction," stated Münzel and Daiber. "We can also show that the elimination of the enzyme phagocytic NADPH oxidase, which is located mainly in inflammatory cells, completely avoids aircraft noise-induced negative effects on vessels and brain." This enzyme was also in the focus of the scientists in the last study. The current investigations finally prove its central role and provide also proof that the negative aircraft noise effects are mediated by this enzyme.

The scientists now also examined the effects of aircraft noise on the brain. The focus was on neuronal nitric oxide (NO) synthase, an important enzyme in the brain. Responsible for learning and memory, this enzyme is down-regulated by aircraft noise and its function is impaired. This new finding may explain the described cognitive developmental disorders in children after exposure to aircraft noise.

Another finding is that the transcription factor FoxO3 plays a central role in noise-induced vascular and brain damage. The consequence of the observed down-regulation of this transcription factor by night-time noise leads to a defective gene expression network that controls cellular events as a function of circadian rhythm. Disturbance of the circadian rhythm can lead to sleep disorders and subsequently to more cardiovascular, mental, and metabolic disorders. To this end, the scientists came to this recognition through extensive genetic analysis by means of Next Generation Sequencing (NGS) and by demonstrating a prevention of the aforementioned vascular damage by treatment with the FoxO3 activator Bepridil.

According to the study initiators, these results represent a further breakthrough in noise research. "With our findings, especially with regard to night-time noise, we can now explain clinical results, e.g., according to the so-called HYENA study, where night-time noise in particular can trigger high blood pressure. The finding that the elimination of the enzyme phagocytic NADPH oxidase completely prevents vascular damage may enable us to develop drug strategies to reduce the negative effects of aircraft noise for our body," both scientists commented.

The authors conclude from their findings that it must be an important goal to protect the night's sleep from noise and in particular to implement the legally defined night's sleep from 10 o'clock at night to 6 o'clock in the morning.
-end-


Johannes Gutenberg Universitaet Mainz

Related Sleep Articles:

To sleep deeply: The brainstem neurons that regulate non-REM sleep
University of Tsukuba researchers identified neurons that promote non-REM sleep in the brainstem in mice.
Chronic opioid therapy can disrupt sleep, increase risk of sleep disorders
Patients and medical providers should be aware that chronic opioid use can interfere with sleep by reducing sleep efficiency and increasing the risk of sleep-disordered breathing, according to a position statement from the American Academy of Sleep Medicine.
'Short sleep' gene prevents memory deficits associated with sleep deprivation
The UCSF scientists who identified the two known human genes that promote 'natural short sleep' -- nightly sleep that lasts just four to six hours but leaves people feeling well-rested -- have now discovered a third, and it's also the first gene that's ever been shown to prevent the memory deficits that normally accompany sleep deprivation.
Short sleep duration and sleep variability blunt weight loss
High sleep variability and short sleep duration are associated with difficulties in losing weight and body fat.
Nurses have an increased risk of sleep disorders and sleep deprivation
According to preliminary results of a new study, there is a high prevalence of insufficient sleep and symptoms of common sleep disorders among medical center nurses.
Opioids are not sleep aids, and can actually worsen sleep research finds
Evidence that taking opioids will help people with chronic pain to sleep better is limited and of poor quality, according to an interdisciplinary team of psychologists and medics from the University of Warwick in partnership with Lausanne University Hospital, Switzerland.
Common sleep myths compromise good sleep and health
People often say they can get by on five or fewer hours of sleep, that snoring is harmless, and that having a drink helps you to fall asleep.
Sleep tight! Researchers identify the beneficial role of sleep
Why do animals sleep? Why do humans 'waste' a third of their lives sleeping?
Does extra sleep on the weekends repay your sleep debt? No, researchers say
Insufficient sleep and untreated sleep disorders put people at increased risk for metabolic problems, including obesity and diabetes.
Kicking, yelling during sleep? Study finds risk factors for violent sleep disorder
Taking antidepressants for depression, having post-traumatic stress disorder or anxiety diagnosed by a doctor are risk factors for a disruptive and sometimes violent sleep disorder called rapid eye movement (REM) sleep behavior disorder, according to a study published in the Dec.
More Sleep News and Sleep Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.