Nav: Home

Long suspected theory about the moon holds water

June 14, 2018

A team of Japanese scientists led by Masahiro Kayama of Tohoku University's Frontier Research Institute for Interdisciplinary Sciences, has discovered a mineral known as moganite in a lunar meteorite found in a hot desert in northwest Africa.

This is significant because moganite is a mineral that requires water to form, reinforcing the belief that water exists on the Moon.

"Moganite is a crystal of silicon dioxide and is similar to quartz. It forms on Earth as a precipitate when alkaline water including SiO2 is evaporated under high pressure conditions," says Kayama. "The existence of moganite strongly implies that there is water activity on the Moon."

Kayama and his team analyzed 13 of the lunar meteorites using sophisticated methods to determine chemical compositions and structures of their minerals. These included electron microscopy for high-magnification, and micro-Raman spectroscopy to determine the structure of the minerals based on their atomic vibration.

Moganite was found in only one of those 13 samples, confirming the team's theory that it could not have formed in the African desert. "If terrestrial weathering had produced moganite in the lunar meteorite, there should be moganite present in all the samples that fell to Earth around the same time. But this was not the case," says Kayama.

He adds that part of the moganite had changed into the high-pressure SiO2 minerals stishovite and coesite, which he believes was most likely formed through heavy impact collisions on the Moon

This is the first time that moganite has been detected in lunar rocks. The researchers say the meteorites probably came from an area of the Moon called Procellarum Terrane, and that the moganite was formed through the process of water evaporation in strong sunlight. Kayama's working theory is that deeper under the lunar surface, protected from the sun, crystals of water ice could be abundant.

In recent years, space missions have found evidence of lunar water or ice concentrated at the poles where sunlight appears at a very narrow angle, leading to pockets of cold traps. This is the first time, however, that the scientists have found evidence of abundant water ice in the lunar subsurface at mid and lower latitudes.

Kayama's team estimates that the accumulation of water in the lunar soil is about 0.6 weight percent. If they are right, future lunar explorers would have easier access to the resource, which would greatly enhance the chances of the Moon hosting human settlement and infrastructure, and supporting a variety of industries within the next few decades.

JAXA, the Japan Aerospace Exploration Agency, is said to be considering two future missions - a lunar pole landing mission in five years to look for water resources and a sample return mission from the far-side of the Moon in ten years.

In addition to testing for water in other silica minerals found, Kayama and his team also plan to study water from solar wind to the regolith soils and volcanic eruptions from the lunar mantle. "Solar wind-induced water can give us new insight into the history of sun activity, and volcanic water provides us with information of lunar evolution together with water," says Kayama, about his lab's next project. "It's all very exciting."

Tohoku University

Related Meteorites Articles:

UH research finds evidence of 2 billion years of volcanic activity on Mars
Analysis of a Martian meteorite found in Africa in 2012 has uncovered evidence of at least 2 billion years of volcanic activity on Mars.
Cosmic dust that formed our planets traced to giant stars
Scientists have identified the origin of key stardust grains present in the dust cloud from which the planets in our solar system formed, a study suggests.
Myth busted: No link between gigantic asteroid break-up and rise in biodiversity
Some 470 million years ago, during the middle part of the geological period known as the Ordovician, an asteroid collision took place somewhere between Mars and Jupiter.
Today's rare meteorites were once common
Four-hundred and sixty-six million years ago, there was a giant asteroid collision in outer space, and the debris from that collision has been falling to Earth ever since.
Rare meteorites challenge our understanding of the solar system
Researchers have discovered minerals from 43 meteorites that landed on Earth 470 million years ago.
New evidence on the formation of the solar system
International research involving a Monash University scientist is using new computer models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.
Researchers propose low-mass supernova triggered formation of solar system
A research team led by University of Minnesota School of Physics and Astronomy Professor Yong-Zhong Qian uses new models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.
Meteorites reveal lasting drought on Mars
The lack of liquid water on the surface of Mars today has been demonstrated by new evidence in the form of meteorites on the Red Planet examined by an international team of planetary scientists led by the University of Stirling.
New type of meteorite linked to ancient asteroid collision
An ancient space rock discovered in a Swedish quarry is a type of meteorite never before found on Earth, and likely a remnant of a massive asteroid collision 470 million years ago that sent debris raining to Earth.
SwRI's Bottke named Fellow of Meteoritical Society
Dr. William Bottke, a planetary scientist from Southwest Research Institute, was recently named a Fellow of the Meteoritical Society, recognizing his contributions to meteoritics and related endeavors.

Related Meteorites Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...