Nav: Home

Minimalist biostructures designed to create nanomaterials

June 14, 2018

Researchers of the Institute of Biotechnology and Biomedicine (IBB-UAB) have achieved to generate 4 peptides -molecules smaller than proteins - capable of self-assembling in a controlled manner to form nanomaterials. The research, published in the journal ACS Nano, was conducted by Salvador Ventura, Marta Díaz Caballero and Susanna Navarro (IBB-UAB), and included the collaboration of Isabel Fuentes and Francesc Teixidor (Institute of Materials Science of Barcelona, ICMAB-CSIC).

The new molecules are formed by a chain of 7 amino acids, each of which are made up of only two different amino acids; thus, significantly speeding up and reducing the price of the process of creation of functional synthetic amyloid structures with which to generate nanomaterials to be used in biomedicine and nanotechnology.

In biotechnology, generating functional synthetic amyloid structures to form nanostructures by imitating the natural generation process is not new. The assembly of proteins into stable fibres allows creating supramolecular shapes which no isolated protein can create, and which are used as nanoconductors, photovoltaic structures, biosensors and catalysts.

Quite recently, prion protein sequences - also amyloids - began to be imitated to form nanomaterials. The interest in these sequences lies in the fact that the proteins assemble in a slower and more controlled manner, forming highly ordered non-toxic nanostructures. However, the fact that the sequence is so long, with over 150 amino acids, makes it very difficult and expensive to synthesise.

"We have demonstrated that an adequate design can permit the size of synthetic prion sequences to be reduced down to only 7 amino acids, while conserving the same properties. The four peptides we have fabricated are the shortest structures of this type created until now and capable of forming stable fibril assemblies," explains Salvador Ventura, researcher at the IBB and the UAB Department of Biochemistry and Molecular Biology.

Examples Which Demonstrate Their Efficacy

In the study, researchers verified the stability and functionality of the four fabricated peptides. They built one of the most degradation-resistant biological nanomaterials described to date, nanocables covered in silver which can act as electrical nanoconductors and fibrillar mini enzymes capable of acting as catalysts in the formation of organic nanomaterials.

The new molecules have numerous applications, but researchers aim to focus on "the generation of electrical nanoconductors, and make use of the knowledge of the amyloid structure to generate synthetic fibres capable of being catalysts for new chemical reactions. The final objective will be to generate hybrid peptide-inorganic materials capable of making complex reactions, as those created by the photosystems of plants," the IBB researcher points out.

Prion Domains, at the Heart of the Matter

In order to generate new peptides, IBB researchers based their work on specific sequences of prion proteins, known as prion domains (PrDs). "We studied which amino acids are more frequent and how they are distributed in these regions, demonstrating that only 4 different types of amino acids distributed in a specific manner and always combined by a fifth type of amino acid is sufficient to have the complete code needed to form synthetic prion fibres. In fact, each of the heptapeptides (mini-PrDs) designed only contains two different types of amino acids," says Salvador Ventura.

The study demonstrates the assembling ability of mini-PrDs into highly ordered nanostructures, a process thought to be impossible given the large presence of polar amino acids. The resulting peptides are more polar than any other similarly-sized peptide used until now to form synthetic amyloids; this, for example, allows them to function in the same conditions as natural enzymes.

This study has served to help researchers of the IBB Protein Folding and Conformational Diseases group, directed by Dr Ventura, to open a new line of research focused on the design of nanomaterials.

"We have never worked on nanotechnology, but at the same time we have always had it near, because our strength lies in the knowledge of the molecular mechanism of protein assembly into amyloid structures. For a long time we have been working to create strategies with which to avoid this phenomenon in neurodegenerative diseases. This knowledge has allowed us to design new molecules which we now propose for the fabrication of new nanomaterials," Dr Ventura concludes.
-end-


Universitat Autonoma de Barcelona

Related Amino Acids Articles:

Alzheimer's: Can an amino acid help to restore memories?
Scientists at the Laboratoire des Maladies Neurodégénératives (CNRS/CEA/Université Paris-Saclay) and the Neurocentre Magendie (INSERM/Université de Bordeaux) have just shown that a metabolic pathway plays a determining role in Alzheimer's disease's memory problems.
New study indicates amino acid may be useful in treating ALS
A naturally occurring amino acid is gaining attention as a possible treatment for ALS following a new study published in the Journal of Neuropathology & Experimental Neurology.
Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.
To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.
Nanopores can identify the amino acids in proteins, the first step to sequencing
While DNA sequencing is a useful tool for determining what's going on in a cell or a person's body, it only tells part of the story.
Differentiating amino acids
Researchers develop the foundation for direct sequencing of individual proteins.
Simulating amino acid starvation may improve dengue vaccines
In a new paper in Science Signaling, researchers at the University of Hyderabad in India and the Cornell University College of Veterinary Medicine show that a plant-based compound called halofuginone improves the immune response to a potential vaccine against dengue virus.
CoP-electrocatalytic reduction of nitroarenes: a controllable way to azoxy-, azo- and amino-aromatic
The development of a green, efficient and highly controllable manner to azoxy-, azo- and amino-aromatics from nitro-reduction is extremely desirable both from academic and industrial points of view.
Origin of life insight: peptides can form without amino acids
Peptides, one of the fundamental building blocks of life, can be formed from the primitive precursors of amino acids under conditions similar to those expected on the primordial Earth, finds a new UCL study published in Nature.
Researchers develop fast, efficient way to build amino acid chains
Researchers report that they have developed a faster, easier and cheaper method for making new amino acid chains -- the polypeptide building blocks that are used in drug development and industry -- than was previously available.
More Amino Acids News and Amino Acids Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.