Nav: Home

Proteins as a 'shuttle service' for targeted administration of medication

June 14, 2018

Medication that reaches the spot where it's needed without placing strain on the rest of the body is no longer a vision of the future. Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) has successfully developed proteins that function like a shuttle and release medication directly in the place in the body where they are actually needed. The study could serve as a model and could enable targeted and tissue-specific administration of medication in future.

Using medication in a targeted manner and getting it to its point of action without damaging healthy tissue on the way is a key issue at the moment in pharmaceutical research. Staff at the FAU's Chair of Biotechnology led by Prof. Dr. Yves Muller and lead author of the study Karin Schmidt have developed a new solution for this process. In collaboration with researchers from Friedrich-Schiller Universität Jena, they were able to demonstrate that a certain group of proteins can be restructured to form tissue-specific 'shuttles' for medication.

Methodological basis

A computer-aided process developed by the Chair of Biotechnology and experiments in the laboratory were required in order to solve the difficult task of designing proteins in such a manner so as to allow substances (so-called legates) to be bound to them. The researchers used crystallography in particular for this purpose. In a game of 'ping pong' between applications on the computer and the laboratory, the researchers successfully converted a protein of human origin called antichymotrypsin into proteins to which they could bind a well-known antibiotic (Doxycyclin) and a widely-used cytostatic drug (Doxorubicin) that is used for treating cancer and autoimmune diseases. The bound medication is then released in the target tissue by splitting the shuttle protein with a so-called proteinase enzyme. The published study now provides experimental proof of the fact that the medication was bound to the proteins and how it was achieved and lays the foundation for more detailed investigation.

Potential future areas of application

Using the protein shuttles could enable medication to be used in lower doses in a targeted manner without major procedures and with fewer side effects. This would lower the impact of the medication on the rest of the body and other organs and enable the active ingredients in the drugs to be used more effectively. 'We have a long and difficult path ahead of us before certain proteins can be used as shuttles in medical applications,' says Prof. Dr. Yves Muller, who led the study. The first step is to further increase the binding affinity of the drugs to the shuttle proteins. 'The key has to fit even more precisely into the keyhole,' says Prof. Dr. Muller. The Chair of Biotechnology at FAU will be intensely involved with this project during the next few years.

The next step involves extending the project to clinical applied research. Experimental proof must then demonstrate that the mechanisms also work in tissue. However, the researchers are hopeful that their model study has the potential for developing directed shuttles for medication and could be groundbreaking for targeted and efficient administration of medication.
-end-
*The results of the research were published with the title 'Design of an allosterically modulated doxycycline and doxorubicin drug-binding protein' in the journal Proceedings of the National Academy of Sciences (PNAS) https://doi.org/10.1073/pnas.1716666115.

University of Erlangen-Nuremberg

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Proteins: Structure and Function
by David Whitford (Author)

Proteins: Concepts in Biochemistry
by Paulo Almeida (Author)

Proteins: Structures and Molecular Properties
by Thomas E. Creighton (Author)

Proteins (Explore the molecules of life)
by Tali Lavy (Author), Ofir Corcos (Illustrator)

Protein Power: The High-Protein/Low Carbohydrate Way to Lose Weight, Feel Fit, and Boost Your Health-in Just Weeks!
by Michael R. Eades (Author), Mary Dan Eades (Author)

Plant-Protein Recipes That You'll Love: Enjoy the goodness and deliciousness of 150+ healthy plant-protein recipes!
by Carina Wolff (Author)

Protein Sparing Modified Fast Cookbook
by Maria Emmerich (Author), Craig Emmerich (Author)

Protein Purification, Second Edition (Basics (Garland Science))
by Philip Bonner (Author)

Proteins: Biochemistry and Biotechnology
by Gary Walsh (Author)

The Protein Counter 3rd Edition
by Jo-Ann Heslin M.A. R.D. CDN (Author), Karen J Nolan Ph.D. (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Right To Speak
Should all speech, even the most offensive, be allowed on college campuses? And is hearing from those we deeply disagree with ... worth it? This hour, TED speakers explore the debate over free speech. Guests include recent college graduate Zachary Wood, political scientist Jeffrey Howard, novelist Elif Shafak, and journalist and author James Kirchick.
Now Playing: Science for the People

#486 Volcanoes
This week we're talking volcanoes. Because there are few things that fascinate us more than the amazing, unstoppable power of an erupting volcano. First, Jessica Johnson takes us through the latest activity from the Kilauea volcano in Hawaii to help us understand what's happening with this headline-grabbing volcano. And Janine Krippner joins us to highlight some of the lesser-known volcanoes that can be found in the USA, the different kinds of eruptions we might one day see at them, and how damaging they have the potential to be. Related links: Kilauea status report at USGS A beginner's guide to Hawaii's otherworldly...