Nav: Home

Microbe breaks 'universal' DNA rule by using two different translations

June 14, 2018

DNA is often referred to as the blueprint for life, however scientists have for the first time discovered a microbe that uses two different translations of the DNA code at random. This unexpected finding breaks what was thought to be a universal rule, since the proteins from this microbe cannot be fully predicted from the DNA sequence.

Researchers from the Milner Centre for Evolution at the University of Bath and the Max-Planck Institute for Biophysical Chemistry in Göttingen, Germany have published their findings in the journal Current Biology.

All organisms receive genetic information from their parents which tell the cells how to make proteins - the molecules that do the chemistry in our bodies. This genetic information comprises DNA molecules made up of a sequence of four chemical bases represented by the letters A, T, C and G; the genetic code dictates to the cell which sequence of amino acids to join together to form each protein given the underlying sequence in the DNA.

In a similar way that "dot dot dot" in morse code translates as S, so too the genetic code is read in blocks of three bases (codons) to translate to one amino acid.

It was originally thought that any given codon always results in the same amino acid - just as dot dot dot always means S in morse code. GGA in the DNA for example translates as the amino acid glycine.

However a collaboration between Dr Stefanie Mühlhausen and Professor Laurence Hurst at the Milner Centre for Evolution at the University of Bath, and Martin Kollmar and colleagues at the Max-Planck Institute for Biophysical Chemistry in Göttingen, Germany have now described the first - and unexpected - exception to this rule in a natural code.

The group examined an unusual group of yeasts in which some species have evolved an unusual non-universal code. While humans (and just about everything else) translate the codon CTG as the amino acid leucine, some of the species of yeast instead translate this as the amino acid serine whilst others translate it as alanine.

This is odd enough in itself. But the team was even more surprised to find one species, Ascoidea asiatica, randomly translated this codon as serine or leucine. Every time this codon is translated the cell tosses a chemical coin: heads for leucine, tails it's serine.

Laurence Hurst, Professor of Evolutionary Genetics and Director of the Milner Centre for Evolution at the University of Bath, said: "This is the first time we've seen this in any species.

"We were surprised to find that about 50 per cent of the time that CTG is translated as serine, the remainder of the time it is leucine.

"The last rule of genetics codes, that translation is deterministic, has been broken. This makes this genome unique - you cannot work out the proteins if you know the DNA."

To understand how this happens - how this coin-toss mechanism is physically manifested - the team investigated molecules called tRNAs - which act as translators that recognise the codons and bring together the amino acids to make a protein chain.

Dr Martin Kollmar, from the Max-Planck Institute for Biophysical Chemistry in Göttingen said: "We found that Ascoidea asiatica, is unusual in having two sorts of tRNAs for CTG - one which bridges with leucine and one which bridges with serine.

"So when CTG comes to be translated, it randomly picks one of the two tRNAs and hence randomly picks between serine and leucine."

Dr Stefanie Mühlhausen from The Milner Centre for Evolution at the University of Bath added: "Swapping a serine for leucine could cause serious problems in a protein as they have quite different properties - serine is often found on the surface of the protein whereas leucine is hydrophobic and often buried inside the protein.

"We looked at how this strange yeast copes with this randomness and found that A. asiatica has evolved to use the CTG codon very rarely and especially avoids key parts of proteins."

The researchers estimate that the random encoding is 100 million years old, but other closely related species evolved to lose this potentially problematic trait.

Dr Martin Kollmar said: "It's unclear why A. asiatica should have retained this stochastic encoding for so long. Perhaps there are rare occasions when this sort of randomness can be beneficial."
-end-
The research was funded by the European Research Council and Medical Research Council.

University of Bath

Related Dna Articles:

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.