Nav: Home

The same characteristics can be acquired differently when it comes to neurons

June 14, 2018

Distinct molecular mechanisms can generate the same features in different neurons, a team of scientists has discovered. Its findings, which appear in the journal Cell, enhance our understanding of brain cell development.

"We now have a better comprehension of how neurons form and acquire the features that allow them to fulfill their function in neural circuits that lead to specific behaviors," explains Nikos Konstantinides, a post-doctoral fellow at New York University's Department of Biology and one of the paper's lead authors. "These results point to several potential pathways for medical advancement, such as directing stem cells towards specific neuronal types that can be used to treat brain diseases by cell replacement therapy or by triggering neural stem cells to replace damaged tissue."

The brain contains many types of neurons that control our behavior; each neuron has distinct features that allow them to exert different functions. In order to regulate their interactions, neurons communicate with each other using specific chemicals called neurotransmitters.

The focus of the research published in Cell were the neurons in the visual system of the fruit fly Drosophila, which is commonly studied in deciphering the basic principles that direct the functions of the brain.

Conducted in the laboratories of Professor Claude Desplan, the paper's senior author, at the Center for Genomics and Systems Biology at NYU Abu Dhabi and NYU's Department of Biology, the study deployed a cutting-edge technology, Drop-seq, to sequence the genes expressed in each of tens of thousands of cells.

Their results showed that different neuronal types in the fly visual system can acquire similar features--specifically, expression of the same neurotransmitter--using different mechanisms.

More broadly, the researchers discovered that this dynamic applies to other neuronal characteristics, resulting in a deeper understanding of how complex brain tissue composed of hundreds of interconnected cell types can form.

"The human brain is extremely complex and contains neurons belonging to thousands of cell types, rendering it technically very challenging to study and to understand how neurons are generated and specified," explains Katarina Kapuralin, a post-doctoral researcher at NYU Abu Dhabi and the study's other lead author. "It is therefore necessary to study simpler nervous systems where we can use new technology to understand each of the cells that compose these brains. This will help us define fundamental rules that apply to more complex nervous systems."
-end-
The study also included Chaimaa Fadil, an undergraduate student at NYU Abu Dhabi at the time of the research and currently a Rhodes Scholar, Luendreo Barboza, an NYU doctoral candidate, and Rahul Satija, who is an assistant professor in NYU's Center for Genomics and Systems Biology and a core faculty member at the New York Genome Center.

This work was supported by grants from the National Institutes of Health (R01 EY017916), the NYU Abu Dhabi Institute (G-1205C), and by a National Institutes of Health New Innovator Award (DP2-HG-009623).

DOI: 10.1016/j.cell.2018.05.021

About New York University

Founded in 1831, NYU is one of the world's foremost research universities and is a member of the selective Association of American Universities. NYU has degree-granting university campuses in New York, Abu Dhabi, and Shanghai; has eleven other global academic sites, including London, Paris, Florence, Tel Aviv, Buenos Aires, and Accra; and both sends more students to study abroad and educates more international students than any other U.S. college or university. Through its numerous schools and colleges, NYU is a leader in conducting research and providing education in the arts and sciences, engineering, law, medicine, business, dentistry, education, nursing, the cinematic and performing arts, music and studio arts, public administration, social work, and professional studies, among other areas.

About NYU Abu Dhabi

NYU Abu Dhabi is the first comprehensive liberal arts and science campus in the Middle East to be operated abroad by a major American research university. NYU Abu Dhabi has integrated a highly-selective liberal arts, engineering and science curriculum with a world center for advanced research and scholarship enabling its students to succeed in an increasingly interdependent world and advance cooperation and progress on humanity's shared challenges. NYU Abu Dhabi's high-achieving students have come from 115 nations and speak over 115 languages. Together, NYU's campuses in New York, Abu Dhabi, and Shanghai form the backbone of a unique global university, giving faculty and students opportunities to experience varied learning environments and immersion in other cultures at one or more of the numerous study-abroad sites NYU maintains on six continents.

New York University

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...