Nav: Home

This is what a stretchy circuit looks like

June 14, 2018

Researchers in China have made a new hybrid conductive material--part elastic polymer, part liquid metal--that can be bent and stretched at will. Circuits made with this material can take most two-dimensional shapes and are also non-toxic. The work appears June 14 in the new interdisciplinary journal iScience.

"These are the first flexible electronics that are at once highly conductive and stretchable, fully biocompatible, and able to be fabricated conveniently across size scales with micro-feature precision," says senior author Xingyu Jiang, a professor at the National Center for Nanoscience and Technology. "We believe that they will have broad applications for both wearable electronics and implantable devices."

The material that the researchers fashioned is called a metal-polymer conductor (MPC), so called because it is a combination of two components with very different yet equally desirable properties. The metals in this case are not familiar conductive solids, such as copper, silver, or gold, but rather gallium and indium, which exist as thick, syrupy liquids that still permit electricity to flow. The researchers found that embedding globs of this liquid metal mixture within a supporting network of silicone-based polymer yielded mechanically resilient materials with enough conductivity to support functioning circuits.

Up close, the structure of the MPC can be likened to round liquid metal islands floating in a sea of polymer, with a liquid metal mantle underneath to ensure full conductivity. The researchers successfully tried out different MPC formulations in a variety of applications, including in sensors for wearable keyboard gloves and as electrodes for stimulating the passage of DNA through the membranes of live cells.

"The applications of the MPC depend on the polymers," says first author Lixue Tang, a graduate student in Jiang's research group. "We cast super-elastic polymers to make MPCs for stretchable circuits. We use biocompatible and biodegradable polymers when we want MPCs for implantable devices. In the future, we could even build soft robots by combining electroactive polymers."

In principle, the authors state that their method for manufacturing MPCs, which involves screen printing and microfluidic patterning, can accommodate any two-dimensional geometry, as well as different thicknesses and electrical properties, depending on the concentrations of the liquid metal inks to be sprayed. This versatility could lead directly to desirable biomedical applications, such as flexible patches for identifying and mitigating heart disease.

"We wanted to develop biocompatible materials that could be used to build wearable or implantable devices for diagnosing and treating disease without compromising quality of life, and we believe that this is a first step toward changing the way that cardiovascular diseases and other afflictions are managed," says Jiang.
This work was supported by the Ministry of Science and Technology of China, the Chinese Academy of Sciences, and the National Natural Science Foundation of China.

iScience, Tang et al.: "Printable metal-polymer conductors for highly stretchable bio-devices"

iScience (@iScience_CP) is a new open-access, interdisciplinary journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. Visit: To receive Cell Press media alerts, contact

Cell Press

Related Polymers Articles:

Researcher develops method to change fundamental architecture of polymers
A Florida State University research team has developed methods to manipulate polymers in a way that changes their fundamental structure, paving the way for potential applications in cargo delivery and release, recyclable materials, shape-shifting soft robots, antimicrobials and more.
Bottom-up synthesis of crystalline 2D polymers
Scientists at TU Dresden and Ulm University have succeeded in synthesizing sheet-like 2D polymers by a bottom-up process for the first time.
Secret messages hidden in light-sensitive polymers
Scientists from the CNRS and Aix-Marseille Université have recently shown how valuable light-sensitive macromolecules are: when exposed to the right wavelength of light, they can be transformed so as to change, erase or decode the molecular message that they contain.
Successful application of machine learning in the discovery of new polymers
As a powerful example of how artificial intelligence (AI) can accelerate the discovery of new materials, scientists in Japan have designed and verified polymers with high thermal conductivity -- a property that would be the key to heat management, for example, in the fifth-generation (5G) mobile communication technologies.
How to capture waste heat energy with improved polymers
By one official estimate, American manufacturing, transportation, residential and commercial consumers use only about 40 percent of the energy they draw on, wasting 60 percent.
More Polymers News and Polymers Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...