Nav: Home

Early source of irritable bowel syndrome discovered

June 14, 2018

EAST LANSING, Mich. - Michigan State University scientists have identified an early cause of intestinal inflammation, one of the first stages of inflammatory bowel disease and irritable bowel syndrome, which afflict around 11 percent of the world's population.

The discovery, featured in the current issue of Cellular and Molecular Gastroenterology and Hepatology, points to communication between sensory neurons in the gut and a class of non-neuronal cells - enteric glia - as the culprits.

"The gut has its own brain and that has more neurons in the intestines than in the spinal cord. Within your intestines lies a 'second brain' called the enteric nervous system," said Brian Gulbransen, MSU neuroscientist and the study's senior author. "The enteric nervous system is an exceedingly complex network of neural circuits that programs a diverse array of gut patterns and is responsible for controlling most gastrointestinal functions."

Accompanying the neurons in this second brain are enteric glia, which are responsible for regulating inflammation. The disruption of neural circuits in the gut by inflammation is considered an important factor in the development of irritable bowel syndrome and inflammatory bowel disease.

The research team pinpointed that before the first hints of intestinal pain or rumblings, specific molecular changes spark the discomfort. Tachykinins, peptides that are keys to pain transmission and intestinal contractions, drive enteric neuroinflammation.

The gut's major source of tachykinins are enteric neurons. Tachykinins drive neuroinflammation in the gut through a "multicellular cascade" of enteric neurons, bead-like TRPV1-positive nerve fibers and enteric glia.

Gulbransen's team revealed that glial cells, once thought to be supporting cells, are active signaling cells involved in much of the cross-talk that happens in the gut. The key is isolating a single voice rather than stifling the entire cacophony, Gulbransen said.

"Post inflammation, there are still many angry glial cells. Because they've amped up their signaling, they make you, and your gut, more sensitive," Gulbransen said. "We hope we can turn them back to happy glia, reduce the sensitivity and return gut function to normal."

One of those single voices - the key to intestinal happiness - is NK2R, a receptor that's a critical mechanism in driving neuron-to-glia signaling. The team is just starting to understand the genes involved and inventorying what's being activated and what's not. But NK2R is proving promising.

"By blocking the receptor with GR 159897, which is a known NK2 receptor antagonist drug, it disconnected the signaling between neurons and glia," he said. "It proved to be quite effective in accelerating recovery from inflammation."

This foundation could lead to more targets that could be treated with drugs that would reset the sensitivity of these neurons.
-end-
MSU scientists, including Ninotchska Delvalle, Christine Dharshika, Wilmarie Morales-Soto, David Fried and Lukas Gaudette, all contributed to this study.

This research was funded by the National Institutes of Health and the Crohn's and Colitis Foundation of America.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Michigan State University

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab