Nav: Home

Tripling the energy storage of lithium-ion batteries

June 14, 2018

As the demand for smartphones, electric vehicles, and renewable energy continues to rise, scientists are searching for ways to improve lithium-ion batteries--the most common type of battery found in home electronics and a promising solution for grid-scale energy storage. Increasing the energy density of lithium-ion batteries could facilitate the development of advanced technologies with long-lasting batteries, as well as the widespread use of wind and solar energy. Now, researchers have made significant progress toward achieving that goal.

A collaboration led by scientists at the University of Maryland (UMD), the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, and the U.S. Army Research Lab have developed and studied a new cathode material that could triple the energy density of lithium-ion battery electrodes. Their research was published on June 13 in Nature Communications.

"Lithium-ion batteries consist of an anode and a cathode," said Xiulin Fan, a scientist at UMD and one of the lead authors of the paper. "Compared to the large capacity of the commercial graphite anodes used in lithium-ion batteries, the capacity of the cathodes is far more limited. Cathode materials are always the bottleneck for further improving the energy density of lithium-ion batteries."

Scientists at UMD synthesized a new cathode material, a modified and engineered form of iron trifluoride (FeF3), which is composed of cost-effective and environmentally benign elements--iron and fluorine. Researchers have been interested in using chemical compounds like FeF3 in lithium-ion batteries because they offer inherently higher capacities than traditional cathode materials.

"The materials normally used in lithium-ion batteries are based on intercalation chemistry," said Enyuan Hu, a chemist at Brookhaven and one of the lead authors of the paper. "This type of chemical reaction is very efficient; however, it only transfers a single electron, so the cathode capacity is limited. Some compounds like FeF3 are capable of transferring multiple electrons through a more complex reaction mechanism, called a conversion reaction."

Despite FeF3's potential to increase cathode capacity, the compound has not historically worked well in lithium-ion batteries due to three complications with its conversion reaction: poor energy efficiency (hysteresis), a slow reaction rate, and side reactions that can cause poor cycling life. To overcome these challenges, the scientists added cobalt and oxygen atoms to FeF3 nanorods through a process called chemical substitution. This allowed the scientists to manipulate the reaction pathway and make it more "reversible."

"When lithium ions are inserted into FeF3, the material is converted to iron and lithium fluoride," said Sooyeon Hwang, a co-author of the paper and a scientist at Brookhaven's Center for Functional Nanomaterials (CFN). "However, the reaction is not fully reversible. After substituting with cobalt and oxygen, the main framework of the cathode material is better maintained and the reaction becomes more reversible."

To investigate the reaction pathway, the scientists conducted multiple experiments at CFN and the National Synchrotron Light Source II (NSLS-II)--two DOE Office of Science User Facilities at Brookhaven.

First at CFN, the researchers used a powerful beam of electrons to look at the FeF3 nanorods at a resolution of 0.1 nanometers--a technique called transmission electron microscopy (TEM). The TEM experiment enabled the researchers to determine the exact size of the nanoparticles in the cathode structure and analyze how the structure changed between different phases of the charge-discharge process. They saw a faster reaction speed for the substituted nanorods.

"TEM is a powerful tool for characterizing materials at very small length scales, and it is also able to investigate the reaction process in real time," said Dong Su, a scientist at CFN and a co-corresponding author of the study. "However, we can only see a very limited area of the sample using TEM. We needed to rely on the synchrotron techniques at NSLS-II to understand how the whole battery functions."

At NSLS-II's X-ray Powder Diffraction (XPD) beamline, scientists directed ultra-bright x-rays through the cathode material. By analyzing how the light scattered, the scientists could "see" additional information about the material's structure.

"At XPD, we conducted pair distribution function (PDF) measurements, which are capable of detecting local iron orderings over a large volume," said Jianming Bai, a co-author of the paper and a scientist at NSLS-II. "The PDF analysis on the discharged cathodes clearly revealed that the chemical substitution promotes electrochemical reversibility."

Combining highly advanced imaging and microscopy techniques at CFN and NSLS-II was a critical step for assessing the functionality of the cathode material.

"We also performed advanced computational approaches based on density functional theory to decipher the reaction mechanism at an atomic scale," said Xiao Ji, a scientist at UMD and co-author of the paper. "This approach revealed that chemical substitution shifted the reaction to a highly reversible state by reducing the particle size of iron and stabilizing the rocksalt phase."Scientists at UMD say this research strategy could be applied to other high energy conversion materials, and future studies may use the approach to improve other battery systems.
-end-
This study was supported by the U.S. Army Research Laboratory and DOE's Office of Energy Efficiency and Renewable Energy. Operations at CFN and NSLS-II are supported by DOE's Office of Science

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Follow @BrookhavenLab on Twitter or find us on Facebook.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Related Links

Scientific Paper: "High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction"

An electronic version of this news release with related images is available in Brookhaven Lab's electronic newsroom: https://www.bnl.gov/newsroom/news.php?a=112885

Media contacts: Stephanie Kossman, 631-344-8671, or Peter Genzer, 631-344-3174

DOE/Brookhaven National Laboratory

Related Iron Articles:

Blocking the iron transport could stop tuberculosis
The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply.
Observed: An exoplanet where it rains iron
Nature magazine is publishing today a surprising study about the giant, ultra-hot planet WASP-76b in which researchers from the Instituto de Astrofísica de Canarias (IAC) have taken part.
An iron-clad asteroid
Mineralogists from Jena and Japan discover a previously unknown phenomenon in soil samples from the asteroid 'Itokawa': the surface of the celestial body is covered with tiny hair-shaped iron crystals.
It's Iron, Man: ITMO scientists found a way to treat cancer with iron oxide nanoparticles
Particles previously loaded with the antitumor drug are injected in vivo and further accumulate at the tumor areas.
Iron nanorobots show their true mettle
Multifunctional iron nanowires selectively obliterate cancer cells with a triple-punch combination attack.
The brain may need iron for healthy cognitive development
Iron levels in brain tissue rise during development and are correlated with cognitive abilities, according to research in children and young adults recently published in JNeurosci.
The regulators active during iron deficiency
Iron deficiency is a critical situation for plants, which respond using specific genetic programmes.
How nitrogen-fixing bacteria sense iron
New research reveals how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.
Getting to the root of how plants tolerate too much iron
Salk scientists have found a major genetic regulator of iron tolerance, a gene called GSNOR.
Stressed plants must have iron under control
When land plants' nutrient availability dwindles, they have to respond to this stress.
More Iron News and Iron Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.