Nav: Home

Spontaneous fluctuations of brain activity influence what you see

June 14, 2018

Luca Iemi from HSE University, jointly with Niko A Busch from Westfälische Wilhelms- Universität, have found that the state of excitability of the brain -- indexed byspontaneous neural oscillations - biases a person's subjective perceptual experience, rather than their decision-making strategy. The findings will be published in eNeuro under the title 'Moment-to-moment fluctuations in neuronal excitability bias subjective perception rather than decision-making'.

http://www.eneuro.org/content/early/2018/05/21/ENEURO.0430-17.2018

Imagine sitting in a dark room and a light flashes in front of you. Do you see it? If the light is bright enough, of course, you see it. But what happens when the brightness of the light decreases? At some stage, you are no longer able to see the light.

Surprisingly, experiments in psychology have demonstrated that this transition from 'seeing' to 'not seeing' is not abrupt. If we are exposed to flashes of light of very low brightness, sometimes we will see the flash and sometimes we won't. Furthermore, participants in such experiments occasionally report seeing a flash of light, even when there was none. Why do these inconsistencies exist? Why does our perception occasionally fail to match reality?

Research carried out at HSE's Centre for Cognition & Decision Making and the Berlin School of Mind and Brain aims to understand the brain states that predispose us to correct perceptions of light, as well as to false perceptions of light. This is what the researchers refer to as 'subjective perception'. That is, the perceptual experience from the point of view of the observer, which may not necessarily match the external, objective reality (for example, seeing a flash of light when there is none). The study by Iemi and Busch suggests that subjective perception is influenced by activity occurring spontaneously in the brain. In fact, even when we have our eyes closed or when we are sitting in a darkened room, our brain is still operating.

In a previous experiment, participants were placed in a dark room and scientists measured these spontaneous fluctuations in brain activity using electroencephalography (EEG). At certain random intervals, participants were asked to report whether they had seen a flash of light (the stimulus) or not. Some intervals did have a flash of light and others did not. By measuring the oscillations in the participant's brain, scientists found that, in moments of heightened neural activity (indicated by weak neural oscillations), the participant was more likely to say that they had seen the stimulus, regardless of whether there had been a stimulus or not. This work has already been published in the Journal of Neuroscience. Furthermore, the study showed that states of high excitability made participants more likely to incorrectly report seeing the stimulus when it was absent. 'Previously, it was thought that excitability improved perceptual precision/ability: that is, the higher the excitability, the better you can see the stimulus. This research shows that this is not the case, because, in states of high excitability, a person is also more likely to incorrectly detect a stimulus that is not present,' commented Luca Iemi.

Why does this happen? The findings of the new study in eNeuro demonstrate that increased neural activity predisposes a person to report the presence of a stimulus, that is, it creates what scientists refer to as a 'liberal detection bias'. However, this finding begs the following question: In moments when our brain is extremely active, do we simply prefer to say 'yes, I saw the stimulus'- that is, is there a strategic tendency to say 'yes'? This is what scientists refer to as 'decision bias'. Or, does this increased neural activity elicit an actual perceptual experience - that is, a sort of 'hallucination' of seeing a light when there is none? This is referred to as a 'perceptual bias'. The results of this study point toward the latter interpretation.

This research addresses the fundamental question of how the momentary internal state of a neural system interacts with input from the external world. It is therefore a valuable contribution to our understanding of how brain activity shapes our conscious perception.

There are many devices are currently available on the market, such as wearable technologies, which monitor spontaneous neural oscillations. However, as Luca Iemi points out, we are only at the beginning of understanding what these brain states mean and, furthermore, how to use this information.
-end-


National Research University Higher School of Economics

Related Brain Activity Articles:

More brain activity is not always better when it comes to memory and attention
Potential new ways of understanding the cause of cognitive impairments, such as problems with memory and attention, in brain disorders including schizophrenia and Alzheimer's are under the spotlight in a new research review.
Researchers to predict cognitive dissonance according to brain activity
A new study by HSE researchers has uncovered a new brain mechanism that generates cognitive dissonance -- a mental discomfort experienced by a person who simultaneously holds two or more contradictory beliefs or values, or experiences difficulties in making decisions.
Brain activity can be used to predict reading success up to 2 years in advance
By measuring brainwaves, it is possible to predict what a child's reading level will be years in advance, according to research from Binghamton University, State University of New York.
There's a close association between magnetic systems and certain states of brain activity
Scientists from the University of Granada (UGR) have proven for the first time that there is a close relationship between several emerging phenomena in magnetic systems (greatly studied by condensed matter physicists) and certain states of brain activity.
Hormone can enhance brain activity associated with love and sex
The hormone kisspeptin can enhance activity in brain regions associated with sexual arousal and romantic love, according to new research.
Manipulating brain activity to boost confidence
Is it possible to directly boost one's own confidence by directly training the brain?
Brain activity may predict risk of falls in older people
Measuring the brain activity of healthy, older adults while they walk and talk at the same time may help predict their risk of falls later, according to a study published in the Dec.
Neuro chip records brain cell activity
In order to understand how the brain controls functions, such as simple reflexes or learning and memory, we must be able to record the activity of large networks and groups of neurons.
Too much activity in certain areas of the brain is bad for memory and attention
Researchers led by Dr Tobias Bast in the School of Psychology at The University of Nottingham have found that faulty inhibitory neurotransmission and abnormally increased activity in the hippocampus impairs our memory and attention.
Brain changes after menopause may lead to lack of physical activity
Researchers from the University of Missouri have found a connection between lack of ovarian hormones and changes in the brain's pleasure center, a hotspot in the brain that processes and reinforces messages related to reward, pleasure, activity and motivation for physical exercise.

Related Brain Activity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...