Nav: Home

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

June 14, 2018

Graphene electrodes could enable higher quality imaging of brain cell activity thanks to new research by a team of engineers and neuroscientists at the University of California San Diego.

The researchers developed a technique, using platinum nanoparticles, to lower the impedance of graphene electrodes by 100 times while keeping them transparent. In tests on transgenic mice, the low-impedance graphene electrodes were able to record and image neuronal activity, such as calcium ion spikes, at both the macroscale and single cell levels. The advance brings graphene electrodes a step closer to being adapted into next-generation brain imaging technologies and various basic neuroscience and medical applications.

Over the past five years, researchers have been exploring graphene electrodes for use in neural implants that can be placed directly on the surface of the brain to record neuronal activity. They have several advantages over the traditional metal electrodes used in today's neural implants. They are thinner and flexible, so they can conform better to brain tissue. They are also transparent, which makes it possible to both record and see the activity of neurons directly beneath the electrodes that would otherwise be blocked by opaque metal materials.

However, graphene electrodes suffer from high impedance, which means electrical current has difficulty flowing through the material. This hinders communication between the brain and recording devices. Readings are noisy as a result. And while there are various techniques to reduce the impedance of graphene, they ruin the material's transparency.

In a new study, an interdisciplinary team of researchers at UC San Diego has developed a technique to engineer graphene electrodes that are both transparent and 100 times lower in impedance. Duygu Kuzum, a professor of electrical and computer engineering at the UC San Diego Jacobs School of Engineering, led the work. Her team developed the low-impedance, transparent graphene electrode arrays. They collaborated with Takaki Komiyama, a professor of neurobiology and neurosciences at the UC San Diego School of Medicine and Division of Biological Sciences, whose team performed brain imaging studies with these electrodes in transgenic mice. The work was published recently in Advanced Functional Materials.

"This technique is the first to overcome graphene's electrochemical impedance problem without sacrificing its transparency," said Kuzum. "By lowering impedance, we can shrink electrode dimensions down to single cell size and record neural activity with single cell resolution."

Lowering impedance

Another important aspect of this work is that it is the first to uncover the root of graphene's high impedance--a fundamental property called quantum capacitance. It is essentially a limit on how many "open seats" graphene has to store electrons. And with a limited number of seats dispersed throughout the material, electrons have fewer paths to travel through.

Finding a workaround to this limit was key to lowering impedance. Kuzum's team found that by depositing platinum nanoparticles onto graphene's surface, they created an alternate set of paths to channel electron flow.

"We chose platinum because it is a well-established electrode material. It has been used for decades due its low impedance and biocompatibility. And it can be easily deposited onto graphene at low cost," said first author Yichen Lu, an electrical engineering Ph.D. student in Kuzum's lab at UC San Diego.

Researchers also determined an amount of platinum nanoparticles that was just enough to lower impedance while keeping transparency high. With their method, the electrodes retained about 70 percent of their original transparency, which Kuzum notes is still good enough to get high quality readings using optical imaging.

Recording brain cell activity in mice

Kuzum's team collaborated with neuroscientists in Komiyama's lab to test their electrodes in transgenic mice. Researchers placed an electrode array on the surface of the cortex. They were able to simultaneously record and image calcium ion activity in the brain.

In their experiments, they recorded the total brain activity from the surface of the cortex. At the same time, researchers used a two-photon microscope to shine laser light through the electrodes and were able to directly image the activity of individual brain cells at 50 and 250 micrometers below the brain surface. By obtaining both recording and imaging data at the same time, researchers were able to identify which brain cells were responsible for the total brain activity.

"This new technology makes it possible to combine macroscale recordings of brain activity, like EEG, with microscopic cellular imaging techniques that can resolve detailed activity of individual brain cells," said Komiyama.

"This work opens up new opportunities to use optical imaging to detect which neurons are the source of the activity that we are measuring. This has not been possible with previous electrodes. Now we have a new technology that enables us to record and image the brain in ways we could not before," said Kuzum.

The team's next steps include making the electrodes smaller and incorporating them into high density electrode arrays.
-end-
Paper title: "Ultralow Impedance Graphene Microelectrodes with High Optical Transparency for Simultaneous Deep Two-Photon Imaging in Transgenic Mice." Co-authors include Xin Liu, Ryoma Hattori, Chi Ren and Xingwang Zhang, all at UC San Diego.

This work was funded by an Office of Naval Research Young Investigator Award (N00014161253), the National Science Foundation (ECCS-1752241, ECCS-1734940), San Diego Frontiers of Innovation Scholars Program, Kavli Institute for Brain and Mind Innovative Research, and the National Institutes of Health (R01 NS091010A, R01 EY025349, R01 DC014690, U01 NS094342, P30EY022589). This work was performed in part at the San Diego Nanotechnology Infrastructure (SDNI) at UC San Diego, a member of the National Nanotechnology Coordinate Infrastructure, which is supported by the National Science Foundation (grant ECCS-1542148).

University of California - San Diego

Related Graphene Articles:

New chemical method could revolutionize graphene
University of Illinois at Chicago scientists have discovered a new chemical method that enables graphene to be incorporated into a wide range of applications while maintaining its ultra-fast electronics.
Searching beyond graphene for new wonder materials
Graphene, the two-dimensional, ultra lightweight and super-strong carbon film, has been hailed as a wonder material since its discovery in 2004.
New method of characterizing graphene
Scientists have developed a new method of characterizing graphene's properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials.
Chemically tailored graphene
Graphene is considered as one of the most promising new materials.
Beyond graphene: Advances make reduced graphene oxide electronics feasible
Researchers have developed a technique for converting positively charged (p-type) reduced graphene oxide (rGO) into negatively charged (n-type) rGO, creating a layered material that can be used to develop rGO-based transistors for use in electronic devices.
The Graphene 2017 Conference connects Barcelona with the international graphene-based industry
This prestigious Conference to be held at the Barcelona International Convention Centre (March 28-31) aims to bring together academia and industry to integrate new graphene technologies into practical applications.
Graphene from soybeans
A breakthrough by CSIRO-led scientists has made the world's strongest material more commercially viable, thanks to the humble soybean.
First use of graphene to detect cancer cells
By interfacing brain cells onto graphene, researchers at the University of Illinois at Chicago have shown they can differentiate a single hyperactive cancerous cell from a normal cell, pointing the way to developing a simple, noninvasive tool for early cancer diagnosis.
Development of graphene microwave photodetector
DGIST developed cryogenic microwave photodetector which is able to detect 100,000 times smaller light energy compared to the existing photedetectors.
Adding hydrogen to graphene
IBS researchers report a fundamental study of how graphene is hydrogenated.

Related Graphene Reading:

Graphene: The Superstrong, Superthin, and Superversatile Material That Will Revolutionize the World
by Les Johnson (Author), Joseph E. Meany (Author)

Two scientists give an enthusiastic, layperson's overview of a new supermaterial now in development that could transform many features of daily life, from creating new conveniences to improving health and safety.

What if you discovered an infinitesimally thin material capable of conducting electricity, able to suspend millions of times its own weight, and yet porous enough to filter the murkiest water? And what if this incredible substance is created from the same element that fills the common pencil? That's graphene--a flat, two-dimensional, carbon-based molecule with a single... View Details


Graphene: Fundamentals and emergent applications
by Jamie H. Warner (Author), Franziska Schaffel (Author), Mark Rummeli (Author), Alicja Bachmatiuk (Author)

Providing fundamental knowledge necessary to understand graphene’s atomic structure, band-structure, unique properties and an overview of groundbreaking current and emergent applications, this new handbook is essential reading for materials scientists, chemists and physicists.

Since the 2010 physics Nobel Prize awarded to Geim and Novosolev for their groundbreaking work isolating graphene from bulk graphite, there has been a huge surge in interest in the area. This has led to a large number of news books on graphene. However, for such a vast inflow of new entrants, the current... View Details


Graphene: An Introduction to the Fundamentals and Industrial Applications (Advanced Material Series)
by Madhuri Sharon (Editor), Maheshwar Sharon (Editor), Ashutosh Tiwari (Editor), Hisanori Shinohara (Editor)

Often described as a “miracle material”, graphene’s potential applications are extraordinary, ranging from nanoscale ‘green’ technologies, to sensors and future conductive coatings.

This book covers the topic of ‘graphene’ – the history, fundamental properties,  methods of production and applications of this exciting new material. The style of the book is both scientific and technical – it is accessible to an audience that has a general, undergraduate-level background in the sciences or engineering, and is aimed at industries considering graphene applications.

... View Details


Graphene: Carbon in Two Dimensions
by Mikhail I. Katsnelson (Author)

Graphene is the thinnest known material, a sheet of carbon atoms arranged in hexagonal cells a single atom thick, and yet stronger than diamond. It has potentially significant applications in nanotechnology, 'beyond-silicon' electronics, solid-state realization of high-energy phenomena and as a prototype membrane which could revolutionise soft matter and 2D physics. In this book, leading graphene research theorist Mikhail Katsnelson presents the basic concepts of graphene physics. Topics covered include Berry phase, topologically protected zero modes, Klein tunneling, vacuum reconstruction... View Details


Graphene: A New Paradigm in Condensed Matter and Device Physics
by E. L. Wolf (Author)

The book is an introduction to the science and possible applications of Graphene, the first one-atom-thick crystalline form of matter. Discovered in 2004 by now Nobelists Geim and Novoselov, the single layer of graphite, a hexagonal network of carbon atoms, has astonishing electrical and mechanical properties. It supports the highest electrical current density of any material, far exceeding metals copper and silver. Its absolute minimum thickness, 0.34 nanometers, provides an inherent advantage in possible forms of digital electronics past the era of Moore's Law.

The book describes the... View Details


Graphene: Fabrication, Characterizations, Properties and Applications
by Hongwei Zhu (Author)

Graphene: Fabrication, Characterizations, Properties and Applications presents a comprehensive review of the current status of graphene, especially focused on synthesis, fundamental properties and future applications, aiming to giving a comprehensive reference for scientists, researchers and graduate students from various sectors. Graphene, a single atomic layer of carbon hexagons, has stimulated a lot of research interest owing to its unique structure and fascinating properties.

The book is devoted to understanding graphene fundamentally yet comprehensively through a wide... View Details


Graphene: Synthesis and Applications (Nanomaterials and their Applications)
by Wonbong Choi (Editor), Jo-won Lee (Editor)

Since the late 20th century, graphene―a one-atom-thick planar sheet of sp2-bonded carbon atoms densely packed in a honeycomb crystal lattice―has garnered appreciable attention as a potential next-generation electronic material due to its exceptional properties. These properties include high current density, ballistic transport, chemical inertness, high thermal conductivity, optical transmittance, and super hydrophobicity at nanometer scale.

In contrast to research on its excellent electronic and optoelectronic properties, research on the syntheses of a single sheet of... View Details


Graphene: Fundamentals, Devices, and Applications
by Serhii Shafraniuk (Author)

Graphene is the first example of two-dimensional materials and is the most important growth area of contemporary research. It forms the basis for new nanoelectronic applications. Graphene, which comprises field-effect structures, has remarkable physical properties.

This book focuses on practical applications determined by the unique properties of graphene. Basic concepts are elucidated by end-of-chapter problems, the answers to which are provided in the accompanying solutions manual. The mechanisms of electric and thermal transport in the gated graphene, interface phenomena,... View Details


The Graphene Handbook (2018 edition)
by Ron Mertens (Author)

The Graphene Handbook is a comprehensive guide to graphene technology, industry and market - brought to you by Graphene-Info, the world's leading graphene publication. The Graphene Handbook provides a great introduction to the world of graphene and covers everything you need to know about the graphene industry, market and technology. It is an invaluable guide for material engineers, business developers, researchers, equipment vendors, graphene material companies, private investors and anyone who wants to learn more about graphene today and in the future. View Details


Graphene: Energy Storage and Conversion Applications (Electrochemical Energy Storage and Conversion)
by Zhaoping Liu (Author), Xufeng Zhou (Author)

Suitable for readers from broad backgrounds, Graphene: Energy Storage and Conversion Applications describes the fundamentals and cutting-edge applications of graphene-based materials for energy storage and conversion systems. It provides an overview of recent advancements in specific energy technologies, such as lithium ion batteries, supercapacitors, fuel cells, solar cells, lithium sulfur batteries, and lithium air batteries. It also considers the outlook of industrial applications in the near future. Offering a brief introduction to the major synthesis methods of graphene, the... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Person You Become
Over the course of our lives, we shed parts of our old selves, embrace new ones, and redefine who we are. This hour, TED speakers explore ideas about the experiences that shape the person we become. Guests include aerobatics pilot and public speaker Janine Shepherd, writers Roxane Gay and Taiye Selasi, activist Jackson Bird, and fashion executive Kaustav Dey.
Now Playing: Science for the People

#478 She Has Her Mother's Laugh
What does heredity really mean? Carl Zimmer would argue it's more than your genes along. In "She Has Her Mother’s Laugh: The Power, Perversions, and Potential of Heredity", Zimmer covers the history of genetics and what kinship and heredity really mean when we're discovering how to alter our own DNA, and, potentially, the DNA of our children.