Nav: Home

UW study shows how instruction changes brain circuitry in

June 14, 2018

The early years are when the brain develops the most, forming neural connections that pave the way for how a child -- and the eventual adult -- will express feelings, embark on a task, and learn new skills and concepts.

Scientists have even theorized that the anatomical structure of neural connections forms the basis for how children identify letters and recognize words. In other words, the brain's architecture may predetermine who will have trouble with reading, including children with dyslexia.

But teaching can change that, a new University of Washington study finds.

Using MRI measurements of the brain's neural connections, or "white matter," UW researchers have shown that, in struggling readers, the neural circuitry strengthened -- and their reading performance improved -- after just eight weeks of a specialized tutoring program. The study, published June 8 in Nature Communications, is the first to measure white matter during an intensive educational intervention and link children's learning with their brains' flexibility.

"The process of educating a child is physically changing the brain," said Jason Yeatman, an assistant professor in both the UW Department of Speech and Hearing Sciences and the Institute for Learning & Brain Sciences (I-LABS). "We were able to detect changes in brain connections within just a few weeks of beginning the intervention program. It's underappreciated that teachers are brain engineers who help kids build new brain circuits for important academic skills like reading."

The study focused on three areas of white matter -- regions rich with neuronal connections -- that link regions of the brain involved in language and vision.

"We tend to think of these connections as being fixed," said co-author Elizabeth Huber, a UW postdoctoral researcher. "In reality, different experiences can shape the brain in dramatic ways throughout development."

After eight weeks of intensive instruction among study participants who struggled with reading, two of those three areas showed evidence of structural changes -- a greater density of white matter and more organized "wiring." That plasticity points to changes brought about by the environment, indicating that these regions are not inherently inflexible structures. They reorganize in response to experiences children have in the classroom.

Dyslexia, a learning disorder that affects the ability to read and spell words, is the most common language-related learning disability. While estimates vary, between 10 to 20 percent of the population has some form of dyslexia. There is no quick and simple cure, and without intervention, children with dyslexia tend to struggle in school as the need for literacy skills increases over time. ¬

Yeatman, who launched the Brain Development & Education Lab at I-LABS, conducted the study during the summers of 2016 and 2017, when a total of 24 children, ages 7 to 12, participated in a reading intervention program offered by Lindamood-Bell Learning Centers. The company did not fund the study but provided the tutoring services for free to study participants. The participants' parents had reported that their child either struggled with reading or had been diagnosed with dyslexia.

Over eight weeks, the children received one-on-one instruction for four hours a day, five days a week. They took a series of reading tests before and after the tutoring program and underwent four MRI scans and behavioral evaluation sessions at the beginning, middle and end of the eight-week period. A control group of 19 children with a mixture of reading skill levels participated in the MRI and behavioral sessions but did not receive the reading intervention.

The researchers used diffusion MRI measurements to determine the density of three areas of white matter -- areas that contain nerve fibers and connect different specialized processing circuits to each other. Specifically, they looked at the rate at which water diffuses within the white matter: A decline in the rate of diffusion indicates that additional tissue has formed, which allows information to be transmitted faster and easier.

The analysis focused on the left arcuate fasciculus, which connects regions where language and sounds are processed; the left inferior longitudinal fasciculus, where visual inputs, such as letters on a page, are transmitted throughout the brain; and the posterior callosal connections, which link the two hemispheres of the brain.

Subjects in the control group showed no changes in diffusion rates or structure between MRI measurements. But for subjects who took part in the tutoring program, reading skills improved by an average of one full grade level. In the majority of these subjects, diffusion rates decreased in the arcuate and inferior longitudinal fasciculus. For the few children who showed no significant decline in diffusion by MRI, Yeatman said there could be compounding differences in individual capacities for brain plasticity, age of the participants (younger brains may be more susceptible to change than slightly older ones) or other factors.

The callosal connections showed no changes between treatment and control groups, results that support past research suggesting that this structure, though relevant for reading acquisition, may already be mature and stable by age 7, Yeatman said.

Just what kind of tissue was created among reading program participants is likely to be the subject of future study, the authors said. For example, the measurements might be picking up on increases in the number or size of certain types of cells that help nourish and maintain the white matter, or on added insulation for existing neural connections, Huber said. The challenge with MRI data, Yeatman pointed out, is that they reflect an indirect measurement -- not a hands-on examination of the brain.

But the structure of this experiment underscores the importance of the findings, he added: Children participated in a tightly controlled, short-term educational intervention, with measurable, identifiable growth in brain tissue from start to finish.

"Much of what we know about brain plasticity comes from research done in animals," Yeatman said. "The beauty of educational interventions is that they provide a means to study fundamental questions about the link between childhood experiences, brain plasticity and learning, all while giving kids extra help in reading."

Yeatman believes the findings can extend to schools. Teachers have the potential to develop their students' brains, regardless of whether they have the resources to provide individualized instruction for each student in their class.

"While many parents and teachers might worry that dyslexia is permanent, reflecting intrinsic deficits in the brain, these findings demonstrate that targeted, intensive reading programs not only lead to substantial improvements in reading skills, but also change the underlying wiring of the brain's reading circuitry," Yeatman said.
Other authors on the paper were Patrick Donnelly, a graduate student at I-LABS, and Ariel Rokem, a data science fellow at the UW eScience Institute. The study was funded by a grant from the National Science Foundation.

For more information, contact Yeatman at 206-685-3934 or

Grant number: 1551330

University of Washington

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Neuroscience: Exploring the Brain
by Mark F. Bear (Author), Barry W. Connors (Author), Michael A. Paradiso (Author)

The Brain That Changes Itself: Stories of Personal Triumph from the Frontiers of Brain Science
by Norman Doidge (Author)

The Whole-Brain Child: 12 Revolutionary Strategies to Nurture Your Child's Developing Mind
by Daniel J. Siegel (Author), Tina Payne Bryson (Author)

Brain Maker: The Power of Gut Microbes to Heal and Protect Your Brain–for Life
by David Perlmutter (Author), Kristin Loberg (Contributor)

Culturally Responsive Teaching and The Brain: Promoting Authentic Engagement and Rigor Among Culturally and Linguistically Diverse Students
by Zaretta L. Hammond (Author)

Grain Brain: The Surprising Truth about Wheat, Carbs, and Sugar--Your Brain's Silent Killers
by David Perlmutter (Author), Kristin Loberg (Contributor)

An Introduction to Brain and Behavior
by Bryan Kolb (Author), Ian Q. Whishaw (Author), G. Campbell Teskey (Author)

Brain & Behavior: An Introduction to Behavioral Neuroscience
by Bob Garrett (Author), Gerald Hough (Author)

Brain Food: The Surprising Science of Eating for Cognitive Power
by Lisa Mosconi PhD (Author)

How the Brain Learns
by David A. Sousa (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Approaching With Kindness
We often forget to say the words "thank you." But can those two words change how you — and those around you — look at the world? This hour, TED speakers on the power of gratitude and appreciation. Guests include author AJ Jacobs, author and former baseball player Mike Robbins, Dr. Laura Trice, Professor of Management Christine Porath, and former Danish politician Özlem Cekic.
Now Playing: Science for the People

#509 Anisogamy: The Beginning of Male and Female
This week we discuss how the sperm and egg came to be, and how a difference of reproductive interest has led to sexual conflict in bed bugs. We'll be speaking with Dr. Geoff Parker, an evolutionary biologist credited with developing a theory to explain the evolution of two sexes, about anisogamy, sexual reproduction through the fusion of two different gametes: the egg and the sperm. Then we'll speak with Dr. Roberto Pereira, research scientist in urban entomology at the University of Florida, about traumatic insemination in bed bugs.