Nav: Home

New type of photosynthesis discovered

June 14, 2018

The discovery changes our understanding of the basic mechanism of photosynthesis and should rewrite the textbooks.

It will also tailor the way we hunt for alien life and provide insights into how we could engineer more efficient crops that take advantage of longer wavelengths of light.

The discovery, published today in Science, was led by Imperial College London, supported by the BBSRC, and involved groups from the ANU in Canberra, the CNRS in Paris and Saclay and the CNR in Milan.

The vast majority of life on Earth uses visible red light in the process of photosynthesis, but the new type uses near-infrared light instead. It was detected in a wide range of cyanobacteria (blue-green algae) when they grow in near-infrared light, found in shaded conditions like bacterial mats in Yellowstone and in beach rock in Australia.

As scientists have now discovered, it also occurs in a cupboard fitted with infrared LEDs in Imperial College London.

Photosynthesis beyond the red limit

The standard, near-universal type of photosynthesis uses the green pigment, chlorophyll-a, both to collect light and use its energy to make useful biochemicals and oxygen. The way chlorophyll-a absorbs light means only the energy from red light can be used for photosynthesis.

Since chlorophyll-a is present in all plants, algae and cyanobacteria that we know of, it was considered that the energy of red light set the 'red limit' for photosynthesis; that is, the minimum amount of energy needed to do the demanding chemistry that produces oxygen. The red limit is used in astrobiology to judge whether complex life could have evolved on planets in other solar systems.

However, when some cyanobacteria are grown under near-infrared light, the standard chlorophyll-a-containing systems shut down and different systems containing a different kind of chlorophyll, chlorophyll-f, takes over.

Until now, it was thought that chlorophyll-f just harvested the light. The new research shows that instead chlorophyll-f plays the key role in photosynthesis under shaded conditions, using lower-energy infrared light to do the complex chemistry. This is photosynthesis 'beyond the red limit'.

Lead researcher Professor Bill Rutherford, from the Department of Life Sciences at Imperial, said: "The new form of photosynthesis made us rethink what we thought was possible. It also changes how we understand the key events at the heart of standard photosynthesis. This is textbook changing stuff."

Preventing damage by light

Another cyanobacterium, Acaryochloris, is already known to do photosynthesis beyond the red limit. However, because it occurs in just this one species, with a very specific habitat, it had been considered a 'one-off'. Acaryochloris lives underneath a green sea-squirt that shades out most of the visible light leaving just the near-infrared.

The chlorophyll-f based photosynthesis reported today represents a third type of photosynthesis that is widespread. However, it is only used in special infrared-rich shaded conditions; in normal light conditions, the standard red form of photosynthesis is used.

It was thought that light damage would be more severe beyond the red limit, but the new study shows that it is not a problem in stable, shaded environments.

Co-author Dr Andrea Fantuzzi, from the Department of Life Sciences at Imperial, said: "Finding a type of photosynthesis that works beyond the red limit changes our understanding of the energy requirements of photosynthesis. This provides insights into light energy use and into mechanisms that protect the systems against damage by light."

These insights could be useful for researchers trying to engineer crops to perform more efficient photosynthesis by using a wider range of light. How these cyanobacteria protect themselves from damage caused by variations in the brightness of light could help researchers discover what is feasible to engineer into crop plants.

Textbook-changing insights

More detail could be seen in the new systems than has ever been seen before in the standard chlorophyll-a systems. The chlorophylls often termed 'accessory' chlorophylls were actually performing the crucial chemical step, rather than the textbook 'special pair' of chlorophylls in the centre of the complex.

This indicates that this pattern holds for the other types of photosynthesis, which would change the textbook view of how the dominant form of photosynthesis works.

Dr Dennis Nürnberg, the first author and initiator of the study, said: "I did not expect that my interest in cyanobacteria and their diverse lifestyles would snowball into a major change in how we understand photosynthesis. It is amazing what is still out there in nature waiting to be discovered."

Peter Burlinson, lead for frontier bioscience at BBSRC - UKRI says, "This is an important discovery in photosynthesis, a process that plays a crucial role in the biology of the crops that feed the world. Discoveries like this push the boundaries of our understanding of life and Professor Bill Rutherford and the team at Imperial should be congratulated for revealing a new perspective on such a fundamental process."
-end-


Imperial College London

Related Photosynthesis Articles:

Scientists design molecular system for artificial photosynthesis
A molecular system for artificial photosynthesis is designed to mimic key functions of the photosynthetic center in green plants -- light absorption, charge separation, and catalysis -- to convert solar energy into chemical energy stored by hydrogen fuel.
Photosynthesis in the dark? Unraveling the mystery of algae evolution
Researchers compared the photosynthetic regulation in glaucophytes with that in cyanobacteria, to elucidate the changes caused by symbiosis in the interaction between photosynthetic electron transfer and other metabolic pathways.
Mechanism behind the electric charges generated by photosynthesis
Photosynthesis requires a mechanism to produce large amounts of chemical energy without losing the oxidative power needed to break down water.
Research shows global photosynthesis on the rise
Researchers found a global historic record by analyzing gases trapped in Antarctic snow to see the rapid rise in photosynthesis over the past 200 years.
Artificial photosynthesis steps into the light
Rice University leads a project to create an efficient, simple-to-manufacture oxygen-evolution catalyst that pairs well with semiconductors for advanced solar cells.
New study shines light on photosynthesis
Researchers have solved a longstanding mystery in photosynthesis, a process used by plants and other organisms to convert light energy into chemical energy.
Study: Viruses support photosynthesis in bacteria -- an evolutionary advantage?
Viruses propagate by infecting a host cell and reproducing inside.
Accelerated chlorophyll reaction in microdroplets to reveal secret of photosynthesis
The research team of DGIST's fellow Hong-Gil Nam, discovered the natural control of chlorophyll activity.
Mechanism for photosynthesis already existed in primeval microbe
A Japanese research team has discovered an evolutionary model for the biological function that creates CO2 from glucose in photosynthesis.
WSU researchers discover unique microbial photosynthesis
Researchers at Washington State University have discovered a new type of cooperative photosynthesis that could be used in engineering microbial communities for waste treatment and bioenergy production.

Related Photosynthesis Reading:

Photosynthesis (Science Concepts, Second Series)
by Alvin Silverstein (Author), Virginia B. Silverstein (Author), Laura Silverstein Nunn (Author)

Explains photosynthesis, the process responsible for providing the material and energy for all living things, and discusses such related issues as respiration, the carbon cycle, acid rain, and thegreenhouse effect. View Details


Photosynthesis (Science Readers: Content and Literacy)
by Teacher Created Materials (Author)

This high-interest informational text will help students gain science content knowledge while building their literacy skills and nonfiction reading comprehension. This appropriately leveled nonfiction science reader features hands-on, simple science experiments. Third grade students will learn all about the process of photosynthesis through this engaging text that is aligned to the Next Generation Science Standards and supports STEM education. View Details


Photosynthesis (Studies in Biology)
by David O. Hall (Author), Krishna Rao (Author)

A clear, concise and vivid account of the process of photosynthesis is presented in this enlarged and fully revised sixth edition. The attractive presentation of this book, including the frequent use of line illustrations and color plates, leads the reader into a fascinating introduction to this sometimes complex topic. The details of photosynthetic processes at the macro and molecular level are discussed based on the results of biochemical, biophysical, and genetic studies. The role of photosynthesis in food production and in the global environment are also highlighted. To aid students in... View Details


Botany: Plants, Cells and Photosynthesis (Super Smart Science)
by April Chloe Terrazas (Author)

Book 8 of the Super Smart Science Series goes outdoors and explores plants. First, a microscopic view of the plant cell and associated organelles. This is followed by an outline of the process of photosynthesis, both the "ingredients" and products. Finally, the vascular part of the plant, the xylem and phloem. Reviews throughout the text reinforce the material learned while candy colored illustrations engage readers of all ages! View Details


Molecular Mechanisms of Photosynthesis
by Robert E. Blankenship (Author)

With the clear writing and accessible approach that have made it the authoritative introduction to the field of molecular photosynthesis, this fully revised and updated edition now offers students and researchers cutting-edge topical coverage of bioenergy applications and artificial photosynthesis; advances in biochemical and genetic methods; as well as new analytical techniques. Chapters cover the origins and evolution of photosynthesis; carbon metabolism; photosynthetic organisms and organelles; and the basic principles of photosynthetic energy storage. The book's website includes... View Details


Photosynthesis: Methods and Protocols (Methods in Molecular Biology)
by Sarah Covshoff (Editor)

This user-friendly book provides a range of classical and modern techniques for the study of photosynthesis in a manner accessible to a broad spectrum of researchers. Broken into four sections, it explores the measurement of physiological photosynthetic parameters, quantifying photosynthetic enzyme abundance and catalytic activity, visualizing cellular and sub-cellular phenotypes, and photosynthesis-inspired energy generation. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary... View Details


Photosynthesis: Changing Sunlight into Food (Nature's Changes)
by Bobbie Kalman (Author)

Describes the history and behavior of plants, and focuses on how energy is produced. View Details


Understanding Photosynthesis with Max Axiom, Super Scientist (Graphic Science)
by Liam O'Donnell (Author), Charles Barnett III (Author), Richard Dominguez (Illustrator)

Take a journey into the science of PHOTOSYNTHESIS in this action-packed graphic novel! Follow along with Max Axiom, Super Scientist, as he shrinks to the size of a plant cell, zooms through the veins of a leaf, and more! Through comic-book style art, this Super Scientist transforms science topics, like physics and Earth sciences, into superpowered adventures. Perfect for science fans and comic book fans alike. View Details


Photosynthesis (Science of Life)
by Christine Zuchora-Walske (Author)

"Explores how photosynthesis constantly powers the inner workings of our world."-- View Details


Plants! Photosynthesis
by KlevaKids (Author)

"Plants! Photosynthesis” is a rhyming science picture book that presents photosynthesis. The story provides a child friendly explanation of photosynthesis. A plant in the Enchanted Garden receives sunshine and rain. Nutrients are absorbed through the roots. Carbon dioxide and oxygen become visible characters. Tomatoes are the result of photosynthesis for the plant in this story. There is a song at the end of the book related to the science concept in the story. View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Person You Become
Over the course of our lives, we shed parts of our old selves, embrace new ones, and redefine who we are. This hour, TED speakers explore ideas about the experiences that shape the person we become. Guests include aerobatics pilot and public speaker Janine Shepherd, writers Roxane Gay and Taiye Selasi, activist Jackson Bird, and fashion executive Kaustav Dey.
Now Playing: Science for the People

#479 Garden of Marvels (Rebroadcast)
This week we're learning about botany and the colorful science of gardening. Author Ruth Kassinger joins us to discuss her book "A Garden of Marvels: How We Discovered that Flowers Have Sex, Leaves Eat Air, and Other Secrets of the Way Plants Work." And we'll speak to NASA researcher Gioia Massa about her work to solve the technical challenges of gardening in space.