Nav: Home

Undersea fiber optics: A new way to detect quakes

June 14, 2018

Monitoring earthquake-induced changes in fiber optic cables on the ocean floor represents a new way to detect quakes, researchers say. Their approach - which would make it possible to sense temblors without installing new seafloor equipment - could permit detection of earthquakes in regions where seismic monitoring has otherwise been difficult, including in subduction zones or in remote ocean regions lacking seismometers. Even though 70% of the Earth's surface is covered with water, almost all seismic stations are on land. As a result, underwater earthquakes remain largely undetected, limiting scientists' ability to identify the source mechanisms of underwater seismic events. To date, scientists have recognized that existing optical fire cable networks - a backbone of international and intercontinental telecommunication - could help expand quake detection capabilities if the fibers therein were used as the sensing element. Now, Giuseppe Marra and colleagues report an approach by which to gauge quake-generated "disturbance" signals in oceanic fiber optic cables. The approach involves measuring so-called optical phase changes triggered in the fibers by seismic waves. It not only allows for earthquake wave detection, but for estimating quake magnitude and epicentral location, the authors say. In several evaluations of this approach involving earthquakes with epicenters in Italy, New Zealand, Japan and Mexico in recent years, Marra and colleagues demonstrated that their approach could effectively detect quake activity and parameters as well as local seismometers.
-end-


American Association for the Advancement of Science

Related Earthquakes Articles:

Scientists get first look at cause of 'slow motion' earthquakes
An international team of scientists has for the first time identified the conditions deep below the Earth's surface that lead to the triggering of so-called 'slow motion' earthquakes.
Separations between earthquakes reveal clear patterns
So far, few studies have explored how the similarity between inter-earthquake times and distances is related to their separation from initial events.
How earthquakes deform gravity
Researchers at the German Research Centre for Geosciences GFZ in Potsdam have developed an algorithm that for the first time can describe a gravitational signal caused by earthquakes with high accuracy.
Bridge protection in catastrophic earthquakes
Bridges are the most vulnerable parts of a transport network when earthquakes occur, obstructing emergency response, search and rescue missions and aid delivery, increasing potential fatalities.
Earthquakes, chickens, and bugs, oh my!
Computer scientists at the University of California, Riverside have developed two algorithms that will improve earthquake monitoring and help farmers protect their crops from dangerous insects, or monitor the health of chickens and other animals.
Can a UNICORN outrun earthquakes?
A University of Tokyo Team transformed its UNICORN computing code into an AI-like algorithm to more quickly simulate tectonic plate deformation due to a phenomenon called a ''fault slip,'' a sudden shift that occurs at the plate boundary.
Earthquakes in slow motion
A survey of slow-slip events in Cascadia reveals new insight into the recently discovered phenomenon.
Earthquakes can be predicted five days ahead
An international team of researchers, which includes physicists from HSE University and the RAS Space Research Institute (IKI), have discovered that, with an impending earthquake, the parameters of internal gravity waves (IGWs) can change five days before a seismic event.
Stanford researchers explain earthquakes we can't feel
Researchers have explained mysterious slow-moving earthquakes known as slow slip events with the help of computer simulations.
Solved: How tides can trigger earthquakes
Some earthquakes along mid-ocean ridges are linked with low tides, but nobody could figure out why.
More Earthquakes News and Earthquakes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.