Nav: Home

Researchers can count on improved proteomics method

June 14, 2018

Every cell in the body contains thousands of different protein molecules and they can change this composition whenever they are induced to perform a particular task or convert into a different cell type. Understanding how cells function depends on proteomics, the ability to measure all of the changes in a cell's protein components.

In a recent paper published in the journal Analytical Chemistry, Martin Wühr and colleagues in Princeton University's Department of Molecular Biology described an improved method to accurately count the proteins present in a cell under different circumstances.

The basic tool for counting proteins is a machine called a mass spectrometer. Cell samples can be run through this type of instrument one at a time, but this is laborious and it can be difficult to detect any changes between different samples. An alternative approach is to label all of the proteins in a particular sample with a unique "isobaric" tag. Multiple samples--up to 11--can then be mixed together and run through the mass spectrometer at the same time, with the isobaric tag functioning as an identifying barcode that tells the researcher which sample the protein originally came from. This speeds things up and makes it easier to quantify any changes in the protein composition of different samples.

"However, with the simplest version of isobaric tagging, known as TMT-MS2, there are major difficulties in distinguishing real signals from background noise," Wühr explains. "That makes the readouts unreliable and only semi-quantitative."

A more complex version of isobaric tagging, called TMT-MS3, can improve this signal-to-noise problem, but it is slower and less sensitive. Moreover, it relies on a much more expensive type of mass spectrometer beyond the reach of most researchers.

While he was a postdoc at Harvard University, Wühr developed a different approach to isobaric tagging that solved the signal-to-noise problem while remaining compatible with cheaper, widely available mass spectrometers. But the technique--known as TMTc--was not without its own problems, particularly a lack of precision that made it hard to obtain consistent results.

In their recent Analytical Chemistry paper, Wühr and two of his graduate students, Matthew Sonnett and Eyan Yeung, described an improved version of TMTc that they named TMTc+. By changing how the cell samples are prepared and altering the computer algorithm that extracts data from the mass spectrometer, Wühr and colleagues were able to address many of the limitations associated with the various methods of isobaric tagging.

"The TMTc+ method is in a kind of sweet spot compared to the other methods," Wühr says. "It provides superb measurement accuracy and precision, it's at least as sensitive as any other method, and it's compatible with around ten times more mass spectrometers than TMT-MS3."

Naturally, Wühr says, there is still room for improvement. TMTc+ only allows a maximum of 5 samples to be run at the same time, and the detection of proteins in these samples is relatively inefficient. Both of these problems can be solved by developing new types of isobaric tags. "We have to explore the chemical space of these tags and find ones that work really well," Wühr says. "To this end, we have started a collaboration with the Carell group, organic chemistry experts at the LMU Munich, and already published a proof of principle paper. Eventually, these efforts should lead to an approach that will allow researchers to count every protein in a cell as it changes its form and function."
-end-
M. Sonnett, E. Yeung, and M. Wühr. Accurate, Sensitive, and Precise Multiplexed Proteomics Using the Complement Reporter Ion Cluster. Analytical Chemistry. 90(8): 5032-5039. (2018). doi: 10.1021/acs.analchem.7b04713

M. Stadlmeier, J. Bogena, M. Wallner, M. Wühr, and T. Carell. A Sulfoxide?Based Isobaric Labelling Reagent for Accurate Quantitative Mass Spectrometry. Angewandte Chemie International Edition. 57(11):2958-2962. (2018). doi: 10.1002/anie.201708867

Princeton University

Related Proteins Articles:

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
New tool for the crystallization of proteins
ETH researchers have developed a new method of crystallizing large membrane proteins in order to determine their structure.
New interaction mechanism of proteins discovered
UZH researchers have discovered a previously unknown way in which proteins interact with one another and cells organize themselves.
When proteins shake hands
Protein nanofibres often have outstanding properties such as a high stability, biodegradability, or antibacterial effect.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.