Development of durable MTJ under harsh environment for STT-MRAM at 1Xnm technology node

June 14, 2019

Researchers at Tohoku University have announced the development of a new magnetic tunnel junction, by which the team has demonstrated an extended retention time for digital information without an increase of the active power consumption.

Non-volatile memories are essential constituents in integrated circuits, because they can offer low power consumption. Among proposed non-volatile memories, spin-transfer-torque magnetoresistive random access memory (STT-MRAM) has been intensively researched and developed, because of their high read/write speed, low voltage operation capability, and high endurance.

Currently, the application area of STT-MRAM is limited in consumer electronics. In order to use STT-MRAM in areas such as automotive and social infrastructure, it is vital to develop a magnetic tunnel junction (MTJ) with a high thermal stability factor that determines retention time for digital information, while keeping the power consumption low.

The research team, led by Professor Tetsuo Endoh, has developed a new magnetic tunnel junction with a highly reliability for STT-MRAM at reduced dimensions of 1Xnm technology node. To increase the thermal stability factor, it is necessary to increase the interfacial magnetic anisotropy originating at the CoFeB/MgO interface.

To increase the interfacial anisotropy, the research team has invented a structure with twice the number of CoFeB/MgO interfaces compared with a conventional one (Figs. 1a and 1b). Although the increase in the number of interfaces can enhance the thermal stability factor, it might also increase the writing current (the active power consumption) and degrade the tunnel magnetoresistance ratio of STT-MRAM cells, resulting in a lower reading operation frequency. The team has mitigated these effects by engineering the MTJ structure to keep the power consumption low and tunnel magnetoresistance ratio high.

The research team has demonstrated that the thermal stability factor can be increased by a factor of 1.5 - 2, without increasing the writing current and thus the active power consumption (Figs. 2a and 2b) or degrading the tunnel magnetoresistance ratio.

Therefore, the research team is optimistic that this new MTJ technology can lead to a widening of application areas of STT-MRAM at 1Xnm technology node in harsh environments such as automotive and social infrastructure. The team has also adopted the same material set as those used in the STT-MRAM currently mass-produced, retaining compatibility with the existing process. The technology will simultaneously achieve high cost-effectiveness for mass-production.

This research is part of CIES's Industrial Affiliation on STT MRAM program and JST-OPERA program Grant Number JPMJOP1611, Japan. Results will be presented at this year's Symposia on VLSI Technology and Circuits which will be held in Kyoto, Japan from June 9 -14, 2019.

Results will be presented at this year's Symposia on VLSI Technology and Circuits which will be held in Kyoto, Japan from June 9 -14, 2019.
-end-


Tohoku University

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.