Immortal quantum particles

June 14, 2019

As the saying goes, nothing lasts forever. The laws of physics confirm this: on our planet, all processes increase entropy, thus molecular disorder. For example, a broken glass would never put itself back together again.

Theoretical physicists at the Technical University of Munich (TUM) and the Max Planck Institute for the Physics of Complex Systems have discovered that things which seem inconceivable in the everyday world are possible on a microscopic level.

"Until now, the assumption was that quasiparticles in interacting quantum systems decay after a certain time. We now know that the opposite is the case: strong interactions can even stop decay entirely," explains Frank Pollmann, Professor for Theoretical Solid-State Physics at the TUM. Collective lattice vibrations in crystals, so-called phonons, are one example of such quasiparticles.

The concept of quasiparticles was coined by the physicist and Nobel prize winner Lev Davidovich Landau. He used it to describe collective states of lots of particles or rather their interactions due to electrical or magnetic forces. Due to this interaction, several particles act like one single one.

Numeric methods open up new perspectives

Up until now, it wasn't known in detail which processes influence the fate of these quasiparticles in interacting systems," says Pollmann. "It is only now that we possess numerical methods with which we can calculate complex interactions as well as computers with a performance which is high enough to solve these equations."

"The result of the elaborate simulation: admittedly, quasiparticles do decay, however new, identical particle entities emerge from the debris," says the lead author, Ruben Verresen. "If this decay proceeds very quickly, an inverse reaction will occur after a certain time and the debris will converge again. This process can recur endlessly and a sustained oscillation between decay and rebirth emerges."

From a physical point of view, this oscillation is a wave which is transformed into matter, which, according to quantum mechanical wave-particle duality, is possible. Therefore, the immortal quasiparticles do not transgress the second law of thermodynamics. Their entropy remains constant, decay has been stopped.

The reality check

The discovery also explains phenomena which were baffling until now. Experimental physicists had measured that the magnetic compound Ba3CoSB2O9 is astonishingly stable. Magnetic quasiparticles, magnons, are responsible for it. Other quasiparticles, rotons, ensure that helium which is a gas on the earth's surface becomes a liquid at absolute zero which can flow unrestricted.

"Our work is purely basic research," emphasizes Pollmann. However, it is perfectly possible that one day the results will even allow for applications, for example the construction of durable data memories for future quantum computers.
-end-


Technical University of Munich (TUM)

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.