Nav: Home

Virus genes help determine if pea aphids get their wings

June 14, 2019

Many of an organism's traits are influenced by cues from the organism's environment. These features are known as phenotypically plastic traits and are important in allowing an organism to cope with unpredictable environments.

But what are the genetic mechanisms underlying these traits?

Jennifer Brisson, an associate professor of biology at the University of Rochester, and her former postdoctoral student Benjamin Parker, now an assistant professor of microbiology at the University of Tennessee, studied phenotypically plastic traits in pea aphids and uncovered, for the first time, genes that influence whether aphids produce wingless or winged offspring in response to their environment. In a new paper in the journal Current Biology, the researchers shed light on how phenotypically plastic traits evolve and address critical questions about the evolution of environmentally sensitive traits.

Pea aphids are insects that reproduce rapidly and typically give birth to offspring that do not have wings. As many gardeners know, aphids can quickly overwhelm and kill the host plants on which they live and feed. When an environment becomes too crowded with other aphids, the females begin producing offspring that have wings, rather than the typical wingless offspring. The winged offspring can then fly to and colonize new, less crowded plants.

"Aphids have been doing this trick for millions of years," Brisson says. "But some aphids are more sensitive to crowding than others. Figuring out why is key to understanding how this textbook example of phenotypic plasticity works."

The researchers used techniques from evolutionary genetics and molecular biology to identify genes that determine the degree to which aphids respond to crowding. Surprisingly, the genes they uncovered are from a virus that then became incorporated into the aphid genome. The virus, which is from a group of insect viruses called densoviruses, causes its host to produce offspring with wings. Researchers believe the virus does this in order to facilitate its own dispersal. As Brisson and Parker found, the gene from the virus retained the same function of producing winged offspring even after it was transferred and incorporated into the aphid genome.

"This is a novel role for viral genes that are co-opted by the genome for other purposes, like modulating plastic phenotypes," Parker says. "Microbial genes can become incorporated into animal genomes, and this process is important to evolution."

Most laterally transferred DNA--DNA that is inherited from other organisms, like viruses--is not expressed by its hosts because it is quickly inactivated or eliminated. However, there are examples in most organisms--even humans--where genomes co-opt genes laterally; in humans, for instance, the gene that creates a membrane between the placenta and the fetus was co-opted from a retrovirus.

Brisson and Parker found a clear case in which genes from outside an organism were co-opted by the organism's genome to modify the strength of a plastic response to environmental cues. Microbial genes like those from viruses can, therefore, play an important role in insect and animal evolution, Brisson says. "Even in ancient traits like the one studied here, new genes can start to play a role in shaping plastic traits and can help organisms cope with an unpredictable world."
-end-


University of Rochester

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...