Nav: Home

Modified enzyme can increase second-generation ethanol production

June 14, 2019

One of the main challenges of second-generation biofuel production is identifying enzymes produced by microorganisms for use in a "cocktail" of enzymes to catalyze biomass hydrolysis, in which the enzymes act together to break down the carbohydrates in sugarcane trash and bagasse, for example, and convert them into simple sugars for fermentation.

A group of researchers at the University of Campinas (UNICAMP), working in partnership with colleagues at the Brazilian Biorenewables National Laboratory (LNBR) in Campinas, São Paulo State, Brazil, have discovered that Trichoderma harzianum, a fungus found in the Amazon, produces an enzyme with the potential to play a key role in enzyme cocktails.

The enzyme, which is called β-glucosidase and belongs to glycoside hydrolase family 1 (GH1), acts in the last stage of biomass degradation to produce free glucose for fermentation and conversion into ethanol. In the laboratory, however, the researchers observed that high levels of glucose inhibited the activity of β-glucosidase.

"We also found that the enzyme's optimal catalytic activity occurred at 40 °C. This represented another obstacle to use of the enzyme because in an industrial setting, the enzymatic hydrolysis of biomass is performed at higher temperatures, typically around 50 °C," said Clelton Aparecido dos Santos, a postdoctoral researcher at UNICAMP's Center for Molecular Biology and Genetic Engineering (CBMEG) with a scholarship from FAPESP.

Based on an analysis of the enzyme's structure combined with genomics and molecular biology techniques, the researchers were able to modify the structure to solve these problems and considerably enhance its biomass degradation efficiency.

The study resulted from a project with a regular research grant from FAPESP and a Thematic Project also supported by FAPESP. The findings are published in the journal Scientific Reports.

"The modified protein we developed proved far more efficient than the unmodified enzyme and can be used to supplement the enzyme cocktails sold today to break down biomass and produce second-generation biofuels," Santos told.

To arrive at the modified protein, the researchers initially compared the crystal structure of the original molecule with structures of other wild-type β-glucosidases in the GH1 and GH3 glycoside hydrolase families. The results of the analysis showed that glucose-tolerant GH1 glucosidases had a deeper and narrower substrate channel than other β-glucosidases and that this channel restricted glucose access to the enzyme's active site.

Less glucose-tolerant β-glucosidases had a shallower but wider active site entrance channel, allowing more of the glucose produced by these enzymes to enter the last stage of biomass degradation. Retained glucose blocks the protein's channel and reduces its catalytic activity.

Based on this observation, the researchers used a molecular biology technique known as site-directed mutagenesis to replace two amino acids that might be acting as "gatekeepers" at the entrance to the enzyme's active site, letting in glucose or blocking it. Analysis of their experiments showed that the modification narrowed the channel to the active site.

"The mutant enzyme's active site shrank to a similar size to that of the glucose-tolerant GH1 β-glucosidases," Santos said.

Enhanced efficiency

The researchers conducted a number of experiments to measure the improved protein's performance in breaking down biomass, especially sugarcane bagasse, an agroindustrial waste with vast potential for profitable use in Brazil. During a research internship abroad with a scholarship from São Paulo Research Foundation - FAPESP, Santos worked with a research group led by Paul Dupree, a professor at the University of Cambridge in the UK, on an analysis of the tailored enzyme's glucose release efficiency when different sources of plant biomass were converted.

The analysis showed that the catalytic efficiency of the modified enzyme was 300% higher than that of the wild-type enzyme in terms of glucose release. Moreover, it was more glucose-tolerant, so more glucose was released from all the tested plant biomass feedstocks. The mutation also enhanced the enzyme's thermal stability during fermentation.

"Mutation of the two amino acids at the active site made the enzyme superefficient. It's ready for industrial application," said Anete Pereira de Souza, a professor at UNICAMP and principal investigator for the project. "One of the enzyme's advantages is that it's produced in vitro and not from a modified fungus or other organism, so it can be mass-produced at relatively low cost."
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at and visit FAPESP news agency at to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Amino Acids Articles:

A unique amino acid for brain cancer therapy
Researchers discover potential application of amino acid taurine in photodynamic therapy for brain cancer.
Nickel: A greener route to fatty acids
Chemists designed a nickel catalyst that easily transforms petroleum feedstocks into valuable compounds like fatty acids.
Amino acids in diet could be key to starving cancer
Cutting out certain amino acids - the building blocks of proteins -- from the diet of mice slows tumor growth and prolongs survival, according to new research published in Nature.
How to brew high-value fatty acids with brewer's yeast
Researchers at Goethe University Frankfurt have succeeded in producing fatty acids in large quantities from sugar or waste containing sugar with the help of yeasts.
Diverse natural fatty acids follow 'Golden Mean'
Bioinformatics scientists at Friedrich Schiller University in Jena (Germany) have discovered that the number of theoretically possible fatty acids with the same chain length but different structures can be determined with the aid of the famous Fibonacci sequence.
Simple fats and amino acids to explain how life began
Life is a process that originated 3.5 billion years ago.
Newly revealed amino acid function could be used to boost antioxidant levels
A Japanese research team has become the first in the world to discover that 2-aminobutyric acid is closely involved in the metabolic regulation of the antioxidant glutathione, and that it can effectively raise levels of glutathione in the body when ingested.
An amino acid controls plants' breath
IBS plant scientists demonstrate that the amino acid L-methionine activates a calcium-channel regulating the opening and closing of tiny plant pores.
Genetic differences in amino acid metabolism are linked to a higher risk of diabetes
A study published today in the journal PLOS Medicine has identified the five genetic variants associated with higher levels of the branched-chain amino acids isoleucine, leucine and valine.
Withholding amino acid depletes blood stem cells, Stanford researchers say
A new study shows that a diet deficient in valine effectively depleted the blood stem cells in mice and made it possible to perform a blood stem cell transplantation on them.

Related Amino Acids Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...