Modified enzyme can increase second-generation ethanol production

June 14, 2019

One of the main challenges of second-generation biofuel production is identifying enzymes produced by microorganisms for use in a "cocktail" of enzymes to catalyze biomass hydrolysis, in which the enzymes act together to break down the carbohydrates in sugarcane trash and bagasse, for example, and convert them into simple sugars for fermentation.

A group of researchers at the University of Campinas (UNICAMP), working in partnership with colleagues at the Brazilian Biorenewables National Laboratory (LNBR) in Campinas, São Paulo State, Brazil, have discovered that Trichoderma harzianum, a fungus found in the Amazon, produces an enzyme with the potential to play a key role in enzyme cocktails.

The enzyme, which is called β-glucosidase and belongs to glycoside hydrolase family 1 (GH1), acts in the last stage of biomass degradation to produce free glucose for fermentation and conversion into ethanol. In the laboratory, however, the researchers observed that high levels of glucose inhibited the activity of β-glucosidase.

"We also found that the enzyme's optimal catalytic activity occurred at 40 °C. This represented another obstacle to use of the enzyme because in an industrial setting, the enzymatic hydrolysis of biomass is performed at higher temperatures, typically around 50 °C," said Clelton Aparecido dos Santos, a postdoctoral researcher at UNICAMP's Center for Molecular Biology and Genetic Engineering (CBMEG) with a scholarship from FAPESP.

Based on an analysis of the enzyme's structure combined with genomics and molecular biology techniques, the researchers were able to modify the structure to solve these problems and considerably enhance its biomass degradation efficiency.

The study resulted from a project with a regular research grant from FAPESP and a Thematic Project also supported by FAPESP. The findings are published in the journal Scientific Reports.

"The modified protein we developed proved far more efficient than the unmodified enzyme and can be used to supplement the enzyme cocktails sold today to break down biomass and produce second-generation biofuels," Santos told.

To arrive at the modified protein, the researchers initially compared the crystal structure of the original molecule with structures of other wild-type β-glucosidases in the GH1 and GH3 glycoside hydrolase families. The results of the analysis showed that glucose-tolerant GH1 glucosidases had a deeper and narrower substrate channel than other β-glucosidases and that this channel restricted glucose access to the enzyme's active site.

Less glucose-tolerant β-glucosidases had a shallower but wider active site entrance channel, allowing more of the glucose produced by these enzymes to enter the last stage of biomass degradation. Retained glucose blocks the protein's channel and reduces its catalytic activity.

Based on this observation, the researchers used a molecular biology technique known as site-directed mutagenesis to replace two amino acids that might be acting as "gatekeepers" at the entrance to the enzyme's active site, letting in glucose or blocking it. Analysis of their experiments showed that the modification narrowed the channel to the active site.

"The mutant enzyme's active site shrank to a similar size to that of the glucose-tolerant GH1 β-glucosidases," Santos said.

Enhanced efficiency

The researchers conducted a number of experiments to measure the improved protein's performance in breaking down biomass, especially sugarcane bagasse, an agroindustrial waste with vast potential for profitable use in Brazil. During a research internship abroad with a scholarship from São Paulo Research Foundation - FAPESP, Santos worked with a research group led by Paul Dupree, a professor at the University of Cambridge in the UK, on an analysis of the tailored enzyme's glucose release efficiency when different sources of plant biomass were converted.

The analysis showed that the catalytic efficiency of the modified enzyme was 300% higher than that of the wild-type enzyme in terms of glucose release. Moreover, it was more glucose-tolerant, so more glucose was released from all the tested plant biomass feedstocks. The mutation also enhanced the enzyme's thermal stability during fermentation.

"Mutation of the two amino acids at the active site made the enzyme superefficient. It's ready for industrial application," said Anete Pereira de Souza, a professor at UNICAMP and principal investigator for the project. "One of the enzyme's advantages is that it's produced in vitro and not from a modified fungus or other organism, so it can be mass-produced at relatively low cost."
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at and visit FAPESP news agency at to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Amino Acids Articles from Brightsurf:

Igniting the synthetic transport of amino acids in living cells
Researchers from ICIQ's Ballester group and IRBBarcelona's Palacín group have published a paper in Chem showing how a synthetic carrier calix[4]pyrrole cavitand can transport amino acids across liposome and cell membranes bringing future therapies a step closer.

Microwaves are useful to combine amino acids with hetero-steroids
Aza-steroids are important class of compounds because of their numerous biological activities.

New study finds two amino acids are the Marie Kondo of molecular liquid phase separation
a team of biologists at the Advanced Science Research Center at The Graduate Center, CUNY (CUNY ASRC) have identified unique roles for the amino acids arginine and lysine in contributing to molecule liquid phase properties and their regulation.

Prediction of protein disorder from amino acid sequence
Structural disorder is vital for proteins' function in diverse biological processes.

A natural amino acid could be a novel treatment for polyglutamine diseases
Researchers from Osaka University, National Center of Neurology and Psychiatry, and Niigata University identified the amino acid arginine as a potential disease-modifying drug for polyglutamine diseases, including familial spinocerebellar ataxia and Huntington disease.

Alzheimer's: Can an amino acid help to restore memories?
Scientists at the Laboratoire des Maladies Neurodégénératives (CNRS/CEA/Université Paris-Saclay) and the Neurocentre Magendie (INSERM/Université de Bordeaux) have just shown that a metabolic pathway plays a determining role in Alzheimer's disease's memory problems.

New study indicates amino acid may be useful in treating ALS
A naturally occurring amino acid is gaining attention as a possible treatment for ALS following a new study published in the Journal of Neuropathology & Experimental Neurology.

Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.

To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.

Nanopores can identify the amino acids in proteins, the first step to sequencing
While DNA sequencing is a useful tool for determining what's going on in a cell or a person's body, it only tells part of the story.

Read More: Amino Acids News and Amino Acids Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to