Nav: Home

Small cluster of neurons is off-on switch for mouse songs

June 14, 2019

DURHAM, N.C. -- Researchers at Duke University have isolated a cluster of neurons in a mouse's brain that are crucial to making the squeaky, ultrasonic 'songs' a male mouse produces when courting a potential mate.

In fact, they now understand these neurons well enough to be able to make a mouse sing on command or to silence it so that it can't sing, even when it wants to impress a mate.

This level of understanding and control is a key advancement in the ongoing search for the mechanisms that allow humans to form speech and other communication sounds. The researchers are broadly interested in the brain's production of speech and have worked with songbirds and mice as models for humans.

"We were interested in understanding how mice produce these 'love songs,' as we call them in the lab," said Katherine Tschida, who led the research as a post-doctoral fellow in both the Richard Mooney and Fan Wang labs at Duke neurobiology.

For this study, Tschida and her colleagues focused on a part of the midbrain called the periaqueductal gray, or PAG for short, because they knew from previous work by others that it would be a key player in the vocalization circuit, she said.

With technology developed by Wang's lab, they were able to locate and isolate the specific neurons involved in the PAG's circuitry and then experiment on them.

By turning the neurons on selectively with a light-based method called optogenetics, the researchers found they could make a mouse immediately begin singing, even though it was alone.

On the other hand, silencing the activity of the PAG neurons rendered courting male mice incapable of singing, even while they persisted in all of their other courtship behaviors.

The females turned out to be less interested in the silent types, which also shows that the singing behavior is key to mouse survival.

Both experiments firmly establish that this "stable and distinct population of neurons" is the key conduit between behavior and vocal communication, Tschida said. The work will appear in the Aug. 7 edition of Neuron, but was published early online in mid-June.

"These neurons are acting as a base for vocalization. But they don't determine the individual parts of the song," Tschida said. "It's a 'gate' for vocalization."

Tschida, who will join the Cornell University faculty next year, said the research will now trace PAG's connections to neurons downstream that communicate with the voicebox, lungs and mouth, for example. And they'll work toward the behavioral centers upstream that tell the mouse there is a female present and he should start singing.

The researchers hope to form a more complete picture of why mice produce different syllables in different contexts. "We know they do it, but don't know yet what parts of the brain drive the behavior," Tschida said.
This research was supported by the National Institutes of Health (MH103908, DC13826, MH117778)

CITATION: "A Specialized Neural Circuit Gates Social Vocalizations in the Mouse," Katherine Tschida, Valerie Michael, Jun Takato, Katsuyasu Sakurai, Richard Mooney, Fan Wang. Neuron, Early online June 13, 2019. DOI: 10.1016/j.neuron.2019.05.025

Duke University

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...