Nav: Home

Two genes implicated in development of prostate enlargement, Stanford study finds

June 14, 2019

For aging men, prostate enlargement is almost as common as graying hair, and yet scientists know very little about why the prostate increases in size or how the process occurs on a molecular level.

In a new study, scientists at the Stanford University School of Medicine have discovered a molecular pattern that flags prostate enlargement, also called benign prostatic hyperplasia, and have even identified two genes that likely play a role in the development of the condition.

The urethra runs directly through the prostate, a gland in the male reproductive system. And while a bigger prostate is not typically life-threatening in itself, it can cause urinary-related symptoms that range from niggling to severe. When the prostate becomes enlarged, it squeezes the urinary tube, causing problems such as incontinence or urinary urgency.

"It can be a terrible bother and, in the most severe cases, can even lead to kidney failure," said James Brooks, MD, professor of urology. Today's treatments work to an extent, but don't completely solve the issues, he added. "Urology as a field needs to do more to own this problem and figure out what the true underlying causes are so we can curb its prevalence and help treat it more effectively."

The new study is one of the first to describe a molecular landscape that differentiates enlarged prostate tissue from normal tissue. The team of scientists also discovered that the cell growth behind a ballooning prostate is not uniform. Several cell types comprise the prostate, and abnormal growth appears to come from an outburst of specific sets of cells, rather than an overall increase of all cell types.

A paper describing the study is available online now and will be included in the June 20 issue of JCI Insight. Brooks and professors of pathology Jonathan Pollack, MD, PhD, and Robert West, MD, PhD, share senior authorship. Former MD-PhD student Lance Middleton is the lead author.

The plight of the prostate

No other gland in the human body, male or female, expands so predictably with age.

Fifty percent of men who are 50 years old have an enlarged prostate, and with every decade, that number increases by 10 percent (60 percent of men who are 60, 70 percent of men who are 70 and so on). A normal prostate is about the size of a walnut, but it can grow to twice that size, sometimes more.

"Researchers have hunted for mutations or growth factors that could trigger prostate growth, but there hasn't been much progress in finding a true cause," Brooks said.

Brooks, Pollack and West took a multipronged approach in search of the answer, analyzing 49 tissue samples from patients who had their prostates removed. The odd thing about prostate enlargement, Brooks said, is that the entire prostate doesn't grow in unison; only certain parts of it expand. Some areas of the prostate actually remain unchanged.

Genomic analysis showed that most of the enlarged areas of the prostates consisted primarily of two types of cells -- epithelial, which make up secretory glands, and stromal fibroblasts, which create structural parts of the prostate. That's not normal, Brooks said, and it clued the researchers into a new understanding of prostate growth: Only some cell types multiply in an enlarged prostate, taking over -- and sometimes eliminating -- other cell types, like weeds in a garden plot.

"So it's not just an increase in cells; it's a fundamental shift in the type of cells that make up the prostate. It's something we've termed 'cellular relandscaping,'" Pollack said. "It's possible that this shift is actually related to the disease progression, and not just arbitrary." One of the overrun cell types, Pollack said, is thought to be involved in the regulation of epithelial cell growth and development.

65-gene signature

Beyond cell type, the researchers analyzed the molecular state of normal and enlarged prostate tissues, looking at data that showed which genes were active in enlarged prostate samples and which were active in normal samples. By comparing gene activity, they found 65 genes whose expression patterns strongly correlated with prostate enlargement. In other words, tissue samples of enlarged prostates reliably showed this gene signature, whereas healthy samples did not. What's more, patients whose prostate tissues strongly correlated with this gene signature reported more severe symptoms.

While the overall signature is only correlation at this point, Brooks and Pollack have singled out two genes involved in cell signaling that they suspect may play a role in the condition's development. One, CXCL13, codes for a protein involved in immune cell recruitment, which Pollack said makes sense because prostate enlargement involves inflammation. The other gene, BMP5, codes for a molecule involved in cell identity and development. Whereas CXCL13 effects are complicated to model in the lab, it's relatively easy to manipulate BMP5. So the researchers rigged an experiment to test if adding a BMP5-laden concoction could change the characteristics of normal prostate tissue. They found that healthy prostate samples could be coerced into expressing the 65-gene signature seen in enlarged prostates.

"They even start to proliferate a little bit," Brooks said. "It's quite remarkable that with this one molecule, we can turn healthy samples into samples that mirror the molecular landscape of an enlarged prostate."

It's still early in the research, the scientists said, and more work needs to be done to confirm the role of BMP5 and CXCL13. But it's a promising step toward finding new avenues for drug development.
Other Stanford co-authors of the study are former postdoctoral scholars Zhewei Shen, PhD, and Okyaz Eminaga, PhD; research assistants Sushama Varma, Jewison Biscocho and Rosalie Nolley; research scientists Anna Pollack, MD, Shirley Zhu, Chunfang Zhu, PhD, and Joseph Foley, PhD; former research scientist Xue Gong, PhD; research associates Sujay Vennam and Robert Sweeney, MD; and professor of biomedical data science and of statistics Robert Tibshirani, PhD.

Pollack, Brooks and West are members of Stanford Bio-X and the Stanford Cancer Institute. Brooks is also a member of the Stanford Maternal & Child Health Research Institute. West is also a member of the Wu Tsai Neurosciences Institute at Stanford.

This study was supported by the National Institutes of Health (grant P20DK103093).

Stanford's departments of Pathology, of Urology, of Biomedical Data Science and of Statistics also supported the work.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit The medical school is part of Stanford Medicine, which includes Stanford Health Care and Stanford Children's Health. For information about all three, please visit

Print media contact: Hanae Armitage at (650) 725-5376 (

Broadcast media contact: Margarita Gallardo at (650) 723-7897 (

Stanford Medicine

Related Genes Articles:

Insomnia genes found
An international team of researchers has found, for the first time, seven risk genes for insomnia.
Genes affecting our communication skills relate to genes for psychiatric disorder
By screening thousands of individuals, an international team led by researchers of the Max Planck Institute for Psycholinguistics, the University of Bristol, the Broad Institute and the iPSYCH consortium has provided new insights into the relationship between genes that confer risk for autism or schizophrenia and genes that influence our ability to communicate during the course of development.
The fate of Neanderthal genes
The Neanderthals disappeared about 30,000 years ago, but little pieces of them live on in the form of DNA sequences scattered through the modern human genome.
Face shape is in the genes
Many of the characteristics that make up a person's face, such as nose size and face width, stem from specific genetic variations, reports John Shaffer of the University of Pittsburgh in Pennsylvania, and colleagues, in a study published on Aug.
Study finds hundreds of genes and genetic codes that regulate genes tied to alcoholism
Using rats carefully bred to either drink large amounts of alcohol or to spurn it, researchers at Indiana and Purdue universities have identified hundreds of genes that appear to play a role in increasing the desire to drink alcohol.
Reading between the genes
For a long time dismissed as 'junk DNA,' we now know that also the regions between the genes fulfill vital functions.
The silence of the genes
Research led by Dr. Keiji Tanimoto from the University of Tsukuba, Japan, has brought us closer to understanding the mechanisms underlying the phenomenon of genomic imprinting.
Why some genes are highly expressed
The DNA in our cells is folded into millions of small packets, like beads on a string, allowing our two-meter linear DNA genomes to fit into a nucleus of only about 0.01 mm in diameter.
Activating genes on demand
A new approach developed by Harvard geneticist George Church, Ph.D., can help uncover how tandem gene circuits dictate life processes, such as the healthy development of tissue or the triggering of a particular disease, and can also be used for directing precision stem cell differentiation for regenerative medicine and growing organ transplants.
Controlling genes with light
Researchers at Duke University have demonstrated a new way to activate genes with light, allowing precisely controlled and targeted genetic studies and applications.

Related Genes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...