Nav: Home

The use of Camelid antibodies for structural biology

June 15, 2016

The use of Camelid antibodies has important implications for future development of reagents for diagnosis and therapeutics in diseases involving a group of enzymes called serine proteases.

Antibodies have many applications, in areas ranging from basic molecular biology and biochemistry to clinical medicine. Recently, much interest has been focused on a special group of antibodies from Camelids (camels, dromedaries, llamas). Due to their small size and unique structures, these Camelid antibodies are ideal building blocks for the generation of novel biological drugs, with multiple competitive advantages over other therapeutic molecules. Moreover, Camelid antibodies offer many technical applications in basic biochemistry and structural biology.

Now, a group of Danish, Belgian, and Chinese researchers have used the Camelid antibody technology to explore basic principles of catalysis and inhibition of a group of enzymes called serine proteases, using X-ray crystal structure analysis. Serine proteases catalyse important processes in blood coagulation, fibrinolysis, tissue remodeling, and other physiological functions.

The research team has developed Camelid antibodies against serine proteases, thereby allowing a structural characterization of a long standing problem concerning whether a certain peptide segment will behave as an inhibitor or a substrate for a serine protease. The results also have important implications for future development of reagents for diagnosis and therapeutics in diseases involving serine proteases.

The results have been obtained in a collaboration between researchers from Aarhus (Denmark), Leuven and Brussels (Belgium) and Hong Kong (China). In particular, Serge Muyldermans, Vrijes Universiteit Brussels, who originally pioneered the development of the Camelid antibody technology, has contributed with his expertise. Tobias-Kromann-Hansen, as part of his Ph.D.-study, spent four months in his laboratory. Tobias Kromann-Hansen is currently developing these studies further as a Carlsberg Postdoctoral Research Fellow at the University of California San Diego, USA. The results are being published in the Journal of Biological Chemistry. The publication is one of the achievements of the Danish-Chinese Centre for Proteases and Cancer, headed by Peter A. Andreasen.
-end-
A Camelid-derived antibody fragment targeting the active site of a serine protease balances between inhibitor and substrate behavior. Kromann-Hansen, T., Oldenburg, E., Yung, K.W.Y, Ghassabeh, G.H., Muyldermans, S., Declerck, P.J., Huang, M., Andreasen, P.A., and Ngo, J.C.K. (2016) J. Biol. Chem. (http://www.jbc.org/content/early/2016/05/23/jbc.M116.732503.full.pdf).

For further information, please contact

Professor, dr. scient. Peter Andreasen

Department of Molecular Biology and Genetics
Aarhus University, Denmark
pa@mbg.au.dk - Mobile: +45 23492837

Aarhus University

Related Antibodies Articles:

Researchers discover first human antibodies that work against all ebolaviruses
After analyzing the blood of a survivor of the 2013-16 Ebola outbreak, a team of scientists from academia, industry and the government has discovered the first natural human antibodies that can neutralize and protect animals against all three major disease-causing ebolaviruses.
New method enables creation of better therapeutic antibodies
Researchers from the University of Maryland and Rockefeller University have refined a method to modify an antibody's sugar group structure, which plays a large role in determining an antibody's ability to activate the immune response.
Antibodies as 'messengers' in the nervous system
Antibodies are able to activate human nerve cells within milliseconds and hence modify their function -- that is the surprising conclusion of a study carried out at Human Biology at the Technical University of Munich (TUM).
Turning therapeutic antibodies inside-out to fight cancer
Researchers at the University of California, Riverside have camels and llamas to thank for their development of a new cancer treatment that is highly selective in blocking the action of faulty matrix metalloproteinases (MMPs).
Zika antibodies from infected patient thwart infection in mice
Researchers have identified neutralizing antibodies against Zika virus from an infected patient that fully protected mice from infection, adding to the current arsenal of antibodies in development for much needed antiviral therapies and vaccines.
A review on the therapeutic antibodies for spinal cord injury
Spinal cord injury (SCI) causes long-lasting damage in the spinal cord that leads to paraparesis, paraplegia, quadriplegia and other lifetime disabilities.
Training human antibodies to protect against HIV
During HIV infection, the virus mutates too rapidly for the immune system to combat, but some people produce antibodies that can recognize the virus even two years after infection.
How antiviral antibodies become part of immune memory
Emory scientists probe activated B cells, important for forming immune memory, during flu vaccination and infection and Ebola infection in humans.
Mouse antibodies pinpoint Zika's weak spots
Antibodies that specifically protect against Zika infection have been identified in mice, report Washington University School of Medicine in St.
Antibodies identified that thwart Zika virus infection
Scientists at Washington University School of Medicine in St. Louis have identified antibodies capable of protecting against Zika virus infection, a significant step toward developing a vaccine, better diagnostic tests and possibly new antibody-based therapies.

Related Antibodies Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".